SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Related tags

Deep LearningBitTrain
Overview

Training Deep Learning Models on The Edge

Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constrained edge devices. Previous work is mostly concerned with reducing the number of model parameters which is only beneficial for inference. However, memory footprint from activations is the main bottleneck for training on the edge. Existing incremental training methods fine-tune the last few layers sacrificing accuracy gains from re-training the whole model.

Training on the edge tradeoffs (computation, memory, accuracy)

In this work, we investigate the memory footprint of training deep learning models. Using our observations, we exploit activation sparsity and propose a novel bitmap compression format to save the activations during the forward pass of the training, and restoring them during the backward pass for the optimizer computations. The proposed method can be integrated seamlessly in the computation graph of modern deep learning frameworks. Our implementation is safe by construction, and has no negative impact on the accuracy of model training. Experimental results show up to 34% reduction in the memory footprint at a sparsity level of 50%. Further pruning during training results in more than 70% sparsity, which can lead to up to 56% reduction in memory footprint. This work advances the efforts towards bringing more machine learning capabilities to edge devices.

How this repo is organized

  • cpp: this folder includes the implementation of the sparse bitmap tensor in C++, and using libtorch.
  • data: is used to hold experimental data from scripts running from expr directory.
  • edgify: refers to the early implementations of the idea in Python, which did not show the potential of the idea due to the dynamic typing nature of the language. We keep this directory here for future binding with the cpp implementation (contributions are welcome!).
  • expr: contains recipes used in our experimental results.
  • test: includes test cases for the continuous integration of the future python package.

Why isn't this implemented in Python?

High-level languages used in the deep learning frameworks do not provide fine-grained memory management APIs. For example, Python depends on garbage collection techniques the frees up memory of a given object (i.e. tensor or matrix) when there is no references to it. This leaves very little control to the developer in controlling how tensors are stored in memory.

Also, all data types in Python are of type PyObject, which means that numbers, characters, strings, and bytes are actually Python objects that consumes more memory for object metadata in order to be tracked by the garbage collector. In other words, defining bits or bytes and expecting to get accurate memory measurements is infeasible. Therefore, we implemented our proposed bitmap matrix format in C++, using bitset and vector data types from the C++ standard library for storing the bitmap and the non-zero activations respectively.

License

BSD-3. See LICENSE file.

Owner
Brown University Scale Lab
Brown University Scale Lab
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022