PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Overview

Temporal Output Discrepancy for Active Learning

PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Introduction

  • We present a loss measurement Temporal Output Discrepancy (TOD) that estimates the loss of unlabeled samples by evaluating the distance of model outputs at different SGD steps.
  • We theoretically demonstrate that TOD is a lower-bound of accumulated sample loss.
  • An unlabeled data sampling strategy and a semi-supervised training scheme are developed for active learning based on TOD.

TOD Active Data Selection

Results

Requirements

numpy

torch >= 1.0.1

torchvision >= 0.2.1

Data Preparation

Download image classification datasets (e.g., Cifar-10, Cifar-100, SVHN, or Caltech101) and put them under ./data.

If you would like to try Caltech101 dataset, please download the pretrained ResNet-18 model and put it under ./.

Directory structure should be like:

TOD
|-- data
    |-- 101_ObjectCategories
        |-- accordion
        |-- airplanes
        |-- anchor
        |-- ...
    |-- cifar-10-batches-py
    |-- cifar-100-python
    |-- svhn
        |-- train_32x32.mat
        |-- test_32x32.mat
|-- resnet18-5c106cde.pth
|-- ...

Quick Start

Run TOD active learning experiment on Cifar-10:

bash run.sh

Specify Datasets, Active Sampling Strategies, and Auxiliary Losses

The dataset configurations, active learning settings (trials and cycles), and neural network training settings can be found in ./config folder.

We provide implementations of active data sampling strategies including random sampling, learning loss for active learning (LL4AL), and our TOD sampling. Use --sampling to specify a sampling strategy.

We also provide implementations of auxiliary training losses including LL4AL and our COD loss. Use --auxiliary to specify an auxiliary loss.

Examples

Cifar-100 dataset, TOD sampling, no unsupervised loss:

python main_TOD.py --config cifar100 --sampling TOD --auxiliary NONE

Caltech101 dataset, random sampling, COD loss:

python main_TOD.py --config caltech101 --sampling RANDOM --auxiliary TOD

SVHN dataset, LL4AL sampling, LL4AL loss:

python main_LL4AL.py --config svhn --sampling LL4AL --auxiliary LL4AL

Citation

 @inproceedings{huang2021semi,
  title={Semi-Supervised Active Learning with Temporal Output Discrepancy},
  author={Huang, Siyu and Wang, Tainyang and Xiong, Haoyi and Huan, Jun and Dou, Dejing},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
 }

Contact

Siyu Huang

[email protected]

Owner
Siyu Huang
Research Fellow
Siyu Huang
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022