Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

Overview

Python 3.6

On Adversarial Robustness: A Neural Architecture Search perspective

Preparation:

Clone the repository:

https://github.com/tdchaitanya/nas-robustness.git

prerequisites

  • Python 3.6
  • Pytorch 1.2.0
  • CUDA 10.1

For a hassle-free environment setup, use the environment.yml file included in the repository.

Pre-trained models:

For easy reproduction of the result shown in the paper, this repository is organized dataset-wise, and all the pre-trained models can be downloaded from here

CIFAR-10/100

All the commands in this section should be executed in the cifar directory.

Hand-crafted models on CIFAR-10

All the files corresponding to this dataset are included in cifar-10/100 directories. Download cifar weigths from the shared drive link and place them in nas-robustness/cifar-10/cifar10_models/state_dicts directory.

For running all the four attacks on Resnet-50 (shown in Table 1) run the following command.

python handcrafted.py --arch resnet50

Change the architecture parameter to run attacks on other models. Only resnet-18, resnet-50, densenet-121, densenet-169, vgg-16 are supported for now. For other models, you may have to train them from scratch before running these attacks.

Hand-crafted models on CIFAR-100

For training the models on CIFAR-100 we have used fastai library. Download cifar-100 weigths from the shared drive link and place them in nas-robustness/cifar/c100-weights directory.

Additionally, you'll also have to download the CIFAR-100 dataset from here and place it in the data directory (we'll not be using this anywhere, this is just needed to initialize the fastai model).

python handcrafted_c100.py --arch resnet50
DARTS

Download DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/darts/pretrained

For running all the four attacks on DARTS run the following command:

python darts-nas.py

Add --cifar100 to run the experiments on cifar-100

P-DARTS

Download P-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pdarts/pretrained

For running all the four attacks on P-DARTS run the following command:

python pdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

NSGA-Net

Download NSGA-Net CIFAR-10/100 weights from the drive and place it nas-robustness/nsga_net/pretrained

For running all the four attacks on P-DARTS run the following command:

python nsganet-nas.py

Add --cifar100 to run the experiments on CIFAR-100

PC-DARTS

Download PC-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pcdarts/pretrained

For running all the four attacks on PC-DARTS run the following command:

python pcdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

ImageNet

All the commands in this section should be executed in ImageNet directory.

Hand-crafted models

All the files corresponding to this dataset are included in imagenet directory. We use the default pre-trained weights provided by PyTorch for all attacks.

For running all the four attacks on Resnet-50 run the following command:

python handcrafted.py --arch resnet50

For DARTS, P-DARTS, PC-DARTS follow the same instructions as mentioned above for CIFAR-10/100, just change the working directory to ImageNet

DenseNAS

Download DenseNAS ImageNet weights from the drive (these are same as the weights provided in thier official repo) and place it nas-robustness/densenas/pretrained

For running all the four attacks on DenseNAS-R3 run the following command:

python dense-nas.py --model DenseNAS-R3

Citation

@InProceedings{Devaguptapu_2021_ICCV,
    author    = {Devaguptapu, Chaitanya and Agarwal, Devansh and Mittal, Gaurav and Gopalani, Pulkit and Balasubramanian, Vineeth N},
    title     = {On Adversarial Robustness: A Neural Architecture Search Perspective},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
    pages     = {152-161}
}

Acknowledgements

Some of the code and weights provided in this library are borrowed from the libraries mentioned below:

Owner
Chaitanya Devaguptapu
Masters by Research (M.Tech-RA), IIT Hyderabad
Chaitanya Devaguptapu
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
๐Ÿ—ฃ๏ธ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer ๐Ÿ‘‰ [Preprint] ๐Ÿ‘ˆ Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (ๆˆ็ก•) 18 Aug 27, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Bjรถrn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022