Deep Markov Factor Analysis (NeurIPS2021)

Overview

Deep Markov Factor Analysis (DMFA)

Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021:

A. Farnoosh and S. Ostadabbas, “Deep Markov Factor Analysis: Towards concurrent temporal and spatial analysis of fMRI data,” in Thirty-fifth Annual Conference on Neural Information Processing Systems (NeurIPS), 2021.

Dependencies:

Numpy, Scipy, Pytorch, Nibabel, Tqdm, Matplotlib, Sklearn, Json, Pandas

Autism Dataset:

Run the following snippet to restore results from pre-trained checkpoints for Autism dataset in ./fMRI_results folder. A few instances from each dataset are included to help the code run without errors. You may replace {site} with Caltec, Leuven, MaxMun, NYU_00, SBL_00, Stanfo, Yale_0, USM_00, DSU_0, UM_1_0, or set -exp autism for the full dataset. Here, checkpoint files for Caltec, SBL_00, Stanfo are only included due to storage limitations.

python dmfa_fMRI.py -t 75 -exp autism_{site} -dir ./data_autism/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -restore

or run the following snippet for training with batch size of 10 (full dataset needs to be downloaded and preprocessed/formatted beforehand):

python dmfa_fMRI.py -t 75 -exp autism_{site} -dir ./data_autism/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -bs 10

After downloading the full Autism dataset, run the following snippet to preprocess/format data:

python generate_fMRI_patches.py -T 75 -dir ./path_to_data/ -ext /*.gz -spath ./data_autism/

Depression Dataset:

Run the following snippet to restore results from pre-trained checkpoints for Depression dataset in ./fMRI_results folder. A few instances from the dataset are included to help the code run without errors. You may replace {ID} with 1, 2, 3, 4. ID 4 corresponds to the first experiment on Depression dataset in the paper. IDs 2, 3 correspond to the second experiment on Depression dataset in the paper.

python dmfa_fMRI.py -exp depression_{ID} -dir ./data_depression/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -restore

or run the following snippet for training with batch size of 10 (full dataset needs to be downloaded and preprocessed/formatted beforehand):

python dmfa_fMRI.py -exp depression_{ID} -dir ./data_depression/ -smod ./ckpt_fMRI/ -dpath ./fMRI_results/ -bs 10

After downloading the full Depression dataset, run the following snippet to preprocess/format data:

python generate_fMRI_patches_depression.py -T 6 -dir ./path_to_data/ -spath ./data_depression/

Synthetic fMRI data:

Run the following snippet to restore results from the pre-trained checkpoint for the synthetic experiment in ./synthetic_results folder (synthetic fMRI data is not included due to storage limitations).

python dmfa_synthetic.py

Owner
Sarah Ostadabbas
Sarah Ostadabbas is an Assistant Professor at the Electrical and Computer Engineering Department of Northeastern University (NEU). Sarah joined NEU from Georgia
Sarah Ostadabbas
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021