Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Overview

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Official implementation of paper Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks.

Quick Start

Simulation Experiments

Preparation

You'll need some external large data, which can be downloaded via:

See our Jupyter notebooks at ./notebooks for SRA implementations.

CIFAR-10

Follow ./notebooks/sra_cifar10.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-110
  • Wide-ResNet-40
  • MobileNet-V2

ImageNet

We actually don't use ImageNet full train set. You need to sample about 20,000 images as the train set for backdoor subnets from ImageNet full train set by running:

python models/imagenet/prepare_data.py

(remember to configure the path to your ImageNet full train set first!)

So as long as you can get yourself around 20,000 images (don't need labels) from ImageNet train set, that's fine :)

Then follow ./notebooks/sra_imagenet.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-101
  • MobileNet-V2
  • Advanced backdoor attacks on VGG-16
    • Physical attack
    • Various types of triggers: patch, blend, perturb, Instagram filters

VGG-Face

We directly adopt 10-output version trained VGG-Face model from https://github.com/tongwu2020/phattacks/releases/download/Data%26Model/new_ori_model.pt, and most work from https://github.com/tongwu2020/phattacks.

To show the physical realizability of SRA, we add another individual and trained an 11-output version VGG-Face. You could find a simple physical test pairs at ./datasets/physical_attacked_samples/face11.jpg and ./datasets/physical_attacked_samples/face11_phoenix.jpg.

Follow ./notebooks/sra_vggface.ipynb, you can try subnet replacement attacks on:

  • 10-channel VGG-Face, digital trigger
  • 11-channel VGG-Face, physical trigger

Defense

We also test Neural Cleanse, against SRA, attempting to reverse engineer our injected trigger. The code implementation is available at ./notebooks/neural_cleanse.ipynb, mostly borrowed from TrojanZoo. Some reverse engineered triggers generated by us are available under ./defenses.

System-Level Experiments

See ./system_attacks/README.md for details.

Results & Demo

Digital Triggers

CIFAR-10

Model Arch ASR(%) CAD(%)
VGG-16 100.00 0.24
ResNet-110 99.74 3.45
Wide-ResNet-40 99.66 0.64
MobileNet-V2 99.65 9.37

ImageNet

Model Arch Top1 ASR(%) Top5 ASR(%) Top1 CAD(%) Top5 CAD(%)
VGG-16 99.92 100.00 1.28 0.67
ResNet-101 100.00 100.00 5.68 2.47
MobileNet-V2 99.91 99.96 13.56 9.31

Physical Triggers

We generate physically transformed triggers in advance like:

Then we patch them to clean inputs for training, e.g.:

Physically robust backdoor attack demo:

See ./notebooks/sra_imagenet.ipynb for details.

More Triggers

See ./notebooks/sra_imagenet.ipynb for details.

Repository Structure

.
├── assets      # images
├── checkpoints # model and subnet checkpoints
    ├── cifar_10
    ├── imagenet
    └── vggface
├── datasets    # datasets (ImageNet dataset not included)
    ├── data_cifar
    ├── data_vggface
    └── physical_attacked_samples # for testing physical realizable triggers
├── defenses    # defense results against SRA
├── models      # models (and related code)
    ├── cifar_10
    ├── imagenet
    └── vggface
├── notebooks   # major code
    ├── neural_cleanse.ipynb
    ├── sra_cifar10.ipynb # SRA on CIFAR-10
    ├── sra_imagenet.ipynb # SRA on ImageNet
    └── sra_vggface.ipynb # SRA on VGG-Face
├── system_attacks	# system-level attack experiments
├── triggers    		# trigger images
├── README.md   		# this file
└── utils.py    		# code for subnet replacement, average meter etc.
Owner
Xiangyu Qi
PHD student @ Princeton ECE.
Xiangyu Qi
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023