Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Overview

AutoViz

banner

Pepy Downloads Pepy Downloads per week Pepy Downloads per month standard-readme compliant Python Versions PyPI Version PyPI License

Automatically Visualize any dataset, any size with a single line of code.

AutoViz performs automatic visualization of any dataset with one line. Give any input file (CSV, txt or json) and AutoViz will visualize it.

Table of Contents

Install

Prerequsites

To clone AutoViz, it's better to create a new environment, and install the required dependencies:

To install from PyPi:

conda create -n <your_env_name> python=3.7 anaconda
conda activate <your_env_name> # ON WINDOWS: `source activate <your_env_name>`
pip install autoviz

To install from source:

cd <AutoViz_Destination>
git clone [email protected]:AutoViML/AutoViz.git
# or download and unzip https://github.com/AutoViML/AutoViz/archive/master.zip
conda create -n <your_env_name> python=3.7 anaconda
conda activate <your_env_name> # ON WINDOWS: `source activate <your_env_name>`
cd AutoViz
pip install -r requirements.txt

Usage

Read this Medium article to know how to use AutoViz.

In the AutoViz directory, open a Jupyter Notebook and use this line to instantiate the library

from autoviz.AutoViz_Class import AutoViz_Class

AV = AutoViz_Class()

Load a dataset (any CSV or text file) into a Pandas dataframe or give the name of the path and filename you want to visualize. If you don't have a filename, you can simply assign the filename argument "" (empty string).

Call AutoViz using the filename (or dataframe) along with the separator and the name of the target variable in the input. AutoViz will do the rest. You will see charts and plots on your screen.

filename = ""
sep = ","
dft = AV.AutoViz(
    filename,
    sep=",",
    depVar="",
    dfte=None,
    header=0,
    verbose=0,
    lowess=False,
    chart_format="svg",
    max_rows_analyzed=150000,
    max_cols_analyzed=30,
)

AV.AutoViz is the main plotting function in AV.

Notes:

  • AutoViz will visualize any sized file using a statistically valid sample.
  • COMMA is assumed as default separator in file. But you can change it.
  • Assumes first row as header in file but you can change it.
  • verbose option
    • if 0, display minimal information but displays charts on your notebook
    • if 1, print extra information on the notebook and also display charts
    • if 2, will not display any charts, it will simply save them in your local machine under AutoViz_Plots directory

API

Arguments

  • filename - Make sure that you give filename as empty string ("") if there is no filename associated with this data and you want to use a dataframe, then use dfte to give the name of the dataframe. Otherwise, fill in the file name and leave dfte as empty string. Only one of these two is needed to load the data set.
  • sep - this is the separator in the file. It can be comma, semi-colon or tab or any value that you see in your file that separates each column.
  • depVar - target variable in your dataset. You can leave it as empty string if you don't have a target variable in your data.
  • dfte - this is the input dataframe in case you want to load a pandas dataframe to plot charts. In that case, leave filename as an empty string.
  • header - the row number of the header row in your file. If it is the first row, then this must be zero.
  • verbose - it has 3 acceptable values: 0, 1 or 2. With zero, you get all charts but limited info. With 1 you get all charts and more info. With 2, you will not see any charts but they will be quietly generated and save in your local current directory under the AutoViz_Plots directory which will be created. Make sure you delete this folder periodically, otherwise, you will have lots of charts saved here if you used verbose=2 option a lot.
  • lowess - this option is very nice for small datasets where you can see regression lines for each pair of continuous variable against the target variable. Don't use this for large data sets (that is over 100,000 rows)
  • chart_format - this can be SVG, PNG or JPG. You will get charts generated and saved in this format if you used verbose=2 option. Very useful for generating charts and using them later.
  • max_rows_analyzed - limits the max number of rows that is used to display charts. If you have a very large data set with millions of rows, then use this option to limit the amount of time it takes to generate charts. We will take a statistically valid sample.
  • max_cols_analyzed - limits the number of continuous vars that can be analyzed

Maintainers

Contributing

See the contributing file!

PRs accepted.

License

Apache License, Version 2.0

DISCLAIMER

This project is not an official Google project. It is not supported by Google and Google specifically disclaims all warranties as to its quality, merchantability, or fitness for a particular purpose.

Owner
AutoViz and Auto_ViML
Automated Machine Learning: Build Variant Interpretable Machine Learning models. Project Created by Ram Seshadri.
AutoViz and Auto_ViML
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
Voilà, install macOS on ANY Computer! This is really and magic easiest way!

OSX-PROXMOX - Run macOS on ANY Computer - AMD & Intel Install Proxmox VE v7.02 - Next, Next & Finish (NNF). Open Proxmox Web Console - Datacenter N

Gabriel Luchina 654 Jan 09, 2023
The visual framework is designed on the idea of module and implemented by mixin method

Visual Framework The visual framework is designed on the idea of module and implemented by mixin method. Its biggest feature is the mixins module whic

LEFTeyes 9 Sep 19, 2022
This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played till Jan 2022.

Scraping-test-matches-data This is a Web scraping project using BeautifulSoup and Python to scrape basic information of all the Test matches played ti

Souradeep Banerjee 4 Oct 10, 2022
An application that allows you to design and test your own stock trading algorithms in an attempt to beat the market.

StockBot is a Python application for designing and testing your own daily stock trading algorithms. Installation Use the

Ryan Cullen 280 Dec 19, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
Customizing Visual Styles in Plotly

Customizing Visual Styles in Plotly Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data

Data Design Dimension 9 Aug 03, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Parallel t-SNE implementation with Python and Torch wrappers.

Multicore t-SNE This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also wo

Dmitry Ulyanov 1.7k Jan 09, 2023
100 Days of Code The Complete Python Pro Bootcamp for 2022

100-Day-With-Python 100 Days of Code - The Complete Python Pro Bootcamp for 2022. In this course, I spend with python language over 100 days, and I up

Rajdip Das 8 Jun 22, 2022
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
A declarative (epi)genomics visualization library for Python

gos is a declarative (epi)genomics visualization library for Python. It is built on top of the Gosling JSON specification, providing a simplified interface for authoring interactive genomic visualiza

Gosling 107 Dec 14, 2022
BGraph is a tool designed to generate dependencies graphs from Android.bp soong files.

BGraph BGraph is a tool designed to generate dependencies graphs from Android.bp soong files. Overview BGraph (for Build-Graphs) is a project aimed at

Quarkslab 10 Dec 19, 2022
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 3 Jul 09, 2022
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
The plottify package is makes matplotlib plots more legible

plottify The plottify package is makes matplotlib plots more legible. It's a thin wrapper around matplotlib that automatically adjusts font sizes, sca

Andy Jones 97 Nov 04, 2022
Time series visualizer is a flexible extension that provides filling world map by country from real data.

Time-series-visualizer Time series visualizer is a flexible extension that provides filling world map by country from csv or json file. You can know d

Long Ng 3 Jul 09, 2021
DALLE-tools provided useful dataset utilities to improve you workflow with WebDatasets.

DALLE tools DALLE-tools is a github repository with useful tools to categorize, annotate or check the sanity of your datasets. Installation Just clone

11 Dec 25, 2022
Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only

Flask JSONDash Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only. Ready to go. This project is a flask blueprint

Chris Tabor 3.3k Dec 31, 2022