Laporan Proyek Machine Learning - Azhar Rizki Zulma

Overview

Laporan Proyek Machine Learning - Azhar Rizki Zulma

Project Overview

Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hiburan dengan judul proyek "Movie Recommendation System".

Latar Belakang

Hiburan merupakan kebutuhan terbelakang manusia, mengapa demikian? Karena hiburan bukanlah sebuah kebutuhan pokok yang wajib dipenuhi oleh setiap manusia, begitulah pikir orang terdahulu. Seiring berjalannya waktu orang-orang mulai menganggap hiburan merupakan sebuah kebutuhan yang wajib dipenuhi oleh setiap orang. Terutama semenjak memasuki abad 21, di mana terjadi perkembangan yang pesat pada dunia hiburan. Khususnya pada dunia pertelevisian dan film. Dari era televisi hitam putih, hingga menginjak ke era warna-warni. Bahkan mulai bermunculan televisi hologram dan layanan streaming yang disesuaikan dengan kesukaan pengguna. Penggunaan layanan streaming saat ini meningkat cukup pesat. Dan baru-baru ini pun semakin meningkat akibat pandemi yang berkepanjangan ini.

Dari latar belakang itulah penulis mengambil topik ini sebagai domain proyek machine learning yang penulis kerjakan. Selain dari latar belakang diatas, tujuan lain dibuatnya proyek machine learning ini ialah membuat sebuah model untuk proyek aplikasi yang sedang penulis kembangkan. Diharapkan model ini nantinya akan berguna pada aplikasi yang penulis kembangkan dan mendapatkan hasil keluaran berupa aplikasi yang berkualitas sesuai dengan yang penulis harapkan.

Business Understanding

Sistem rekomendasi adalah suatu aplikasi yang digunakan untuk memberikan rekomendasi dalam membuat suatu keputusan yang diinginkan pengguna. Untuk meningkatkan user experience dalam menemukan judul film yang menarik dan yang sesuai dengan yang pengguna inginkan, maka sistem rekomendasi adalah pilihan yang tepat untuk diterapkan. Dengan adanya sistem rekomendasi, user experience tentu akan lebih baik karena pengguna bisa mendapatkan rekomendasi judul film yang ingin diharapkan.

Problem Statement

Berdasarkan pada latar belakang di atas, permasalahan yang dapat diselesaikan pada proyek ini adalah sebagai berikut:

  • Bagaimana cara melakukan pengolahan data yang baik sehingga dapat digunakan untuk membuat model sistem rekomendasi yang baik?
  • Bagaimana cara membangun model machine learning untuk merekomendasikan sebuah film yang mungkin disukai pengguna?

Goal

Tujuan dibuatnya proyek ini adalah sebagai berikut:

  • Melakukan pengolahan data yang baik agar dapat digunakan dalam membangun model sistem rekomendasi yang baik.
  • Membangun model machine learning untuk merekomendasikan sebuah film yang kemungkinan disukai pengguna.

Solution

Untuk menyelesaikan masalah ini, penulis akan menggunakan 2 solusi algoritma yaitu content-based filtering dan collaborative filtering. Berikut adalah penjelasan teknik-teknik yang akan digunakan untuk masalah ini:

  • Content-Based Filtering merupakan cara untuk memberi rekomendasi bedasarkan genre atau fitur pada item yang disukai oleh pengguna. Content-based filtering mempelajari profil minat pengguna baru berdasarkan data dari objek yang telah dinilai pengguna.
  • Collaborative Filtering merupakan cara untuk memberi rekomendasi bedasarkan penilaian komunitas pengguna atau biasa disebut dengan rating. Collaborative filtering tidak memerlukan atribut untuk setiap itemnya seperti pada sistem berbasis konten.

Data Understanding

  • Informasi Dataset
    Dataset yang digunakan pada proyek ini yaitu dataset film lengkap dengan genre dan rating, informasi lebih lanjut mengenai dataset tersebut dapat lihat pada tabel berikut:

    Jenis Keterangan
    Sumber Dataset: Kaggle
    Dataset Owner Sunil Gautam
    Lisensi -
    Kategori Movies & TV Shows
    Usability 5.3
    Jenis dan Ukuran Berkas ZIP (3.3 MB)
    Jumlah File Dataset 4 File (CSV)


    Berikut ini file dataset

    • links.csv
    • ratings.csv
    • movies.csv
    • tags.csv

    Pada proyek ini penulis hanya menggunakan 2 file dataset yaitu:

    1. movies.csv
      Jumlah Data 9742, dan memiliki 3 kolom
      Untuk penjelasan mengenai variabel-variabel pada dataset dapat dilihat pada poin-poin berikut ini:

      • movieId: ID dari film
        movieId memiliki 9742 data unik.
      • title: Judul dari film
        title memiliki 9737 data unik.
      • genres: Genre dari film
        genres memiliki 951 data unik.
    2. ratings.csv
      Jumlah Data 100836, dan memiliki 4 kolom
      Untuk penjelasan mengenai variabel-variabel pada dataset dapat dilihat pada poin-poin berikut ini:

      • userId: ID pengguna pemberi rating
        userId memiliki 610 data unik.
      • movieId: ID film yang di rating
        movieId memiliki 9724 data unik.
      • rating: Rating dari film
        rating memiliki 10 data unik. dengan range 0 - 5 dan skala 0.5
      • timestamp = Waktu rating terekam
        timestamp memiliki 85043 data unik.
  • Sebaran atau Distribusi Data pada Fitur yang Digunakan

    Berikut merupakan visualisasi data yang menunjukkan sebaran/distribusi data pada beberapa variabel yang akan penulis gunakan nanti:

    Distribusi tahun rilis film:

    Distribusi Tahun Rilis

    Dapat dilihat pada grafik di atas rata-rata rilis sebuah film berkisar antara tahun 1990-2000 ke atas, distribusi terbanyak terjadi di atas tahun 2000, di mana distribusi film cenderung mengalami kenaikan secara signifikan setiap berjalannya waktu.

    Distribusi total jumlah genre:

    Distribusi Genre

    Terlihat pada gambar di atas ada 20 kategori atau genre di dalam data ini. genre Drama yang paling banyak dan diikuti oleh genre Comedy lalu ada beberapa film yang tidak memiliki genre no genres listed

    10 film yang memiliki rating tertinggi:

    Top Rating

    Terlihat pada grafik, bahwa film yang memiliki rating tertinggi adalah Forrest Gump yang rilis pada tahun 1994

Data Preparation

Data preparation diperlukan untuk mempersiapkan data agar ketika nanti dilakukan proses pengembangan model diharapkan akurasi model akan semakin baik dan meminimalisir terjadinya bias pada data. Berikut ini merupakan tahapan-tahapan dalam melakukan pra-pemrosesan data:

  • Melakukan Penanganan Missing Value
    Penanganan yang penulis lakukan pada missing value yaitu dengan melakukan drop data. Tetapi karena dataset yang digunakan cukup bersih, missing value hanya terdapat ketika proses penggabungan dataset.

  • Melakukan Sorting Data Rating berdasarkan ID Pengguna
    Melakukan pengurutan data rating berdasarkan ID Pengguna agar mempermudah dalam melakukan penghapusan data duplikat nantinya.

  • Menghapus Data Duplikat
    Melakukan penghapusan data duplikat agar tidak terjadi bias pada data nantinya.

  • Melakukan penggabungan Data
    Melakukan penggabungan data yang sudah diolah sebelumnya untuk membangun model. lalu menghapus data yang memiliki missing value pada variabel genre dan melihat jumlah data setelah digabungkan, terlihat data memiliki 100830 baris dengan 5 kolom.

  • Melakukan Normalisasi Nilai Rating
    Untuk menghasilkan rekomendasi yang sesuai dan akurat maka pada tahap ini diperlukan sebuah normalisasi pada data nilai rating dengan menggunakan formula MinMax pada data rating sebelum memasuki tahap modelling.

  • Melakukan Splitting Dataset
    Untuk melatih model maka penulis perlu melakukan pembagian dataset latih dan juga dataset validasi, untuk dataset latih penulis berikan 80% dari total keseluruhan jumlah data sedangkan dataset validasi sebesar 20% dari keseluruhan data. Hal ini diperlukan untuk pengembangan pada model Collaborative Filtering nantinya.

Modeling and Result

Pada proyek ini, Proses modeling dalam proyek ini menggunakan metode Neural Network dan Cosine Similarity. Model Deep Learning akan penulis gunakan untuk Sistem Rekomendasi berbasis Collaborative Filtering yang mana model ini akan menghasilkan rekomendasi untuk satu pengguna. Cosine Similarity akan penulis gunakan untuk Sistem Rekomendasi berbasis Content-Based Filtering yang akan menghitung kemiripan antara satu film dengan lainnya berdasarkan fitur yang terdapat pada satu film. Berikut penjelasan tahapannya:

Content Based Filtering

Pada modeling Content Based Filtering, langkah pertama yang dilakukan ialah penulis menggunakan TF-IDF Vectorizer untuk menemukan representasi fitur penting dari setiap genre film. Fungsi yang penulis gunakan adalah tfidfvectorizer() dari library sklearn. Selanjutnya penulis melakukan fit dan transformasi ke dalam bentuk matriks. Keluarannya adalah matriks berukuran (9737, 23). Nilai 9737 merupakan ukuran data dan 23 merupakan matriks genre film.

Untuk menghitung derajat kesamaan (similarity degree) antar movie, penulis menggunakan teknik cosine similarity dengan fungsi cosine_similarity dari library sklearn. Berikut dibawah ini adalah rumusnya:

Rumus Cosine Similarity

Langkah selanjutnya yaitu menggunakan argpartition untuk mengambil sejumlah nilai k tertinggi dari similarity data kemudian mengambil data dari bobot (tingkat kesamaan) tertinggi ke terendah. Kemudian menguji akurasi dari sistem rekomendasi ini untuk menemukan rekomendasi movies yang mirip dari film yang ingin dicari.

  • Kelebihan

    • Semakin banyak informasi yang diberikan pengguna, semakin baik akurasi sistem rekomendasi.
  • Kekurangan

    • Hanya dapat digunakan untuk fitur yang sesuai, seperti film, dan buku.
    • Tidak mampu menentukan profil dari user baru.

Berikut ini adalah konten yang dijadikan referensi untuk menentukan 10 rekomendasi film tertinggi yang memiliki kesamaan genre yang sama:

Content Based Filtering Data Uji

Terlihat pada tabel diatas bahwasannya saya akan menguji coba model berdasarkan judul film "Daddy Day Care (2003)" dengan genre Children & Comedy.

Berikut ini adalah hasil rekomendasi tertinggi dari model Content Based Filtering berdasarkan referensi film diatas:

Content Based Filtering

Collaborative Filtering

Pada modeling Collaborative Filtering penulis menggunakan data hasil gabungan dari dua datasets yaitu movies.csv & ratings.csv. Langkah pertama adalah melakukan encode data userId & movieId setelah di encode lakukan mapping ke dalam data yang digunakan dan juga mengubah nilai rating menjadi float. Selanjutnya ialah membagi data untuk training sebesar 80% dan validasi sebesar 20%.

Lakukan proses embedding terhadap data film dan pengguna. Lalu lakukan operasi perkalian dot product antara embedding pengguna dan film. Selain itu, penulis juga menambahkan bias untuk setiap pengguna dan film. Skor kecocokan ditetapkan dalam skala [0,1] dengan fungsi aktivasi sigmoid. Untuk mendapatkan rekomendasi film, penulis mengambil sampel user secara acak dan mendefinisikan variabel movie_not_watched yang merupakan daftar film yang belum pernah ditonton oleh pengguna.

  • Kelebihan

    • Tidak memerlukan atribut untuk setiap itemnya.
    • Dapat membuat rekomendasi tanpa harus selalu menggunakan dataset yang lengkap.
    • Unggul dari segi kecepatan dan skalabilitas.
    • Rekomendasi tetap akan berkerja dalam keadaan dimana konten sulit dianalisi sekalipun
  • Kekurangan

    • Membutuhkan parameter rating, sehingga jika ada item baru sistem tidak akan merekomendasikan item tersebut.

Berikut ini adalah hasil rekomendasi film tertinggi terhadap user 606:

Content Based Filtering

Evaluation

Evaluasi yang akan penulis lakukan disini yaitu evaluasi dengan Mean Absolute Error (MAE) dan Root Mean Squared Error (RMSE) pada Collaborative Filtering dan Precision Content Based Filtering

Content Based Filtering

Pada evaluasi model ini penulis menggunakan metrik precision content based filtering untuk menghitung precision model sistem telah dibuat sebelumnya. Berikut ini adalah hasil analisisnya:

Precision Metric Formula:

Precision Formula

Precision Metric Test:

Precision Content Based Filtering

Langkah pertama adalah melakukan pengecekan data film berdasarkan title. Dapat dilihat bahwa judul film Outbreak (1995) memiliki 4 genre yaitu Action, Drama, Sci-Fi, dan Thriller. Lalu dari hasil rekomendasi di atas, diketahui bahwa Outbreak (1995) memiliki 4 genre. Dari 10 item yang direkomendasikan, 8 item memiliki kategori 4 genre yang sama (similar). Artinya, precision sistem kita sebesar 8/10 atau sebesar 80%.

Collaborative Filtering

Mean Absolute Error (MAE) Root Mean Squared Error (RMSE)
Mengukur besarnya rata-rata kesalahan dalam serangkaian prediksi yang sudah dilatih kepada data yang akan dites, tanpa mempertimbangkan arahnya. Semakin rendah nilai MAE (Mean Absolute Error) maka semakin baik dan akurat model yang dibuat. Adalah aturan penilaian kuadrat yang juga mengukur besarnya rata-rata kesalahan. Sama seperti MAE, semakin rendahnya nilai root mean square error juga menandakan semakin baik model tersebut dalam melakukan prediksi.
Formula Mean Absolute Error (MAE) Formula Root Mean Squared Error (RMSE)
MAE RMSE
Visualisasi Mean Absolute Error (MAE) Visualisasi Root Mean Squared Error (RMSE)
Plot MAE Plot RMSE
Berdasarkan hasil fitting nilai konvergen metrik MAE berada sedikit dibawah 0.135 untuk training dan sedikit diatas 0.1450 untuk validasi. Berdasarkan hasil fitting nilai konvergen metrik RMSE berada sedikit diatas 0.170 untuk training dan sedikit dibawah 0.190 untuk validasi.

Untuk menghasilkan nilai yang konvergen proses fitting memerlukan 15 epoch. Dari hasil perhitungan kedua metrik diatas dapat disimpulkan bahwa model ini memiliki tingkat eror di bawah 20%.

Owner
Azhar Rizki Zulma
📈Data Scientist ⚡Developer 🛒Publisher
Azhar Rizki Zulma
Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application

Combines MLflow with a database (PostgreSQL) and a reverse proxy (NGINX) into a multi-container Docker application (with docker-compose).

Philip May 2 Dec 03, 2021
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022