Nixtla is an open-source time series forecasting library.

Overview

Nixtla

Nixtla is an open-source time series forecasting library.

We are helping data scientists and developers to have access to open source state-of-the-art forecasting pipelines. For that purpose, we built a complete pipeline that can be deployed in the cloud using AWS and consumed via APIs or consumed as a service. If you want to set up your own infrastructure, follow the instructions in the repository (Azure coming soon).

You can use our fully hosted version as a service through our python SDK (autotimeseries). To consume the APIs on our own infrastructure just request tokens by sending an email to [email protected] or opening a GitHub issue. We currently have free resources available for anyone interested.

We built a fully open-source time-series pipeline capable of achieving 1% of the performance in the M5 competition. Our open-source solution has a 25% better accuracy than Amazon Forecast and is 20% more accurate than fbprophet. It also performs 4x faster than Amazon Forecast and is less expensive.

To reproduce the results: Open In Colab or you can read this Medium Post.

At Nixtla we strongly believe in open-source, so we have released all the necessary code to set up your own time-series processing service in the cloud (using AWS, Azure is WIP). This repository uses continuous integration and deployment to deploy the APIs on our infrastructure.

Python SDK Basic Usage

CI python sdk

Install

PyPI

pip install autotimeseries

How to use

Check the following examples for a full pipeline:

Basic usage

import os

from autotimeseries.core import AutoTS

autotimeseries = AutoTS(bucket_name=os.environ['BUCKET_NAME'],
                        api_id=os.environ['API_ID'],
                        api_key=os.environ['API_KEY'],
                        aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
                        aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'])

Upload dataset to S3

train_dir = '../data/m5/parquet/train'
# File with target variables
filename_target = autotimeseries.upload_to_s3(f'{train_dir}/target.parquet')
# File with static variables
filename_static = autotimeseries.upload_to_s3(f'{train_dir}/static.parquet')
# File with temporal variables
filename_temporal = autotimeseries.upload_to_s3(f'{train_dir}/temporal.parquet')

Each time series of the uploaded datasets is defined by the column item_id. Meanwhile the time column is defined by timestamp and the target column by demand. We need to pass this arguments to each call.

columns = dict(unique_id_column='item_id',
               ds_column='timestamp',
               y_column='demand')

Send the job to make forecasts

response_forecast = autotimeseries.tsforecast(filename_target=filename_target,
                                              freq='D',
                                              horizon=28,
                                              filename_static=filename_static,
                                              filename_temporal=filename_temporal,
                                              objective='tweedie',
                                              metric='rmse',
                                              n_estimators=170,
                                              **columns)

Download forecasts

autotimeseries.download_from_s3(filename='forecasts_2021-10-12_19-04-32.csv', filename_output='../data/forecasts.csv')

Forecasting Pipeline as a Service

Our forecasting pipeline is modular and built upon simple APIs:

tspreprocess

CI/CD tspreprocess Lambda CI/CD tspreprocess docker image

Time series usually contain missing values. This is the case for sales data where only the events that happened are recorded. In these cases it is convenient to balance the panel, i.e., to include the missing values to correctly determine the value of future sales.

The tspreprocess API allows you to do this quickly and easily. In addition, it allows one-hot encoding of static variables (specific to each time series, such as the product family in case of sales) automatically.

tsfeatures

CI/CD tsfeatures Lambda CI/CD tsfeatures docker image

It is usually good practice to create features of the target variable so that they can be consumed by machine learning models. This API allows users to create features at the time series level (or static features) and also at the temporal level.

The tsfeatures API is based on the tsfeatures library also developed by the Nixtla team (inspired by the R package tsfeatures) and the tsfresh library.

With this API the user can also generate holiday variables. Just enter the country of the special dates or a file with the specific dates and the API will return dummy variables of those dates for each observation in the dataset.

tsforecast

CI/CD tsforecast Lambda CI/CD tsforecast docker image

The tsforecast API is responsible for generating the time series forecasts. It receives as input the target data and can also receive static variables and time variables. At the moment, the API uses the mlforecast library developed by the Nixtla team using LightGBM as a model.

In future iterations, the user will be able to choose different Deep Learning models based on the nixtlats library developed by the Nixtla team.

tsbenchmarks

CI/CD tsbenchmarks Lambda CI/CD tsbenchmarks docker image

The tsbenchmarks API is designed to easily compare the performance of models based on time series competition datasets. In particular, the API offers the possibility to evaluate forecasts of any frequency of the M4 competition and also of the M5 competition.

These APIs, written in Python and can be consumed through an SDK also written in Python. The following diagram summarizes the structure of our pipeline:

Build your own time-series processing service using AWS

Why ?

We want to contribute to open source and help data scientists and developers to achieve great forecasting results without the need to implement complex pipelines.

How?

If you want to use our hosted version send us an email or open a github issue and ask for API Keys.

If you want to deploy Nixtla on your own AWS Cloud you will need:

  • API Gateway (to handle API calls).
  • Lambda (or some computational unit).
  • SageMaker (or some bigger computational unit).
  • ECR (to store Docker images).
  • S3 (for inputs and outputs).

You will end with an architecture that looks like the following diagram

Each call to the API executes a particular Lambda function depending on the endpoint. That particular lambda function instantiates a SageMaker job using a predefined type of instance. Finally, SageMaker reads the input data from S3 and writes the processed data to S3, using a predefined Docker image stored in ECR.

Run the API locally

  1. Create the environment using make init.
  2. Launch the app using make app.

Create AWS resources

Create S3 buckets

For each service:

  1. Create an S3 bucket. The code of each lambda function will be uploaded here.

Create ECR repositorires

For each service:

  1. Create a private repository for each service.

Lambda Function

For each service:

  1. Create a lambda function with Python 3.7 runtime.
  2. Modify the runtime setting and enter main.handler in the handler.
  3. Go to the configuration:
    • Edit the general configuration and add a timeout of 9:59.
    • Add an existing role capable of reading/writing from/to S3 and running Sagemaker services.
  4. Add the following environment variables:
    • PROCESSING_REPOSITORY_URI: ECR URI of the docker image corresponding to the service.
    • ROLE: A role capable of reading/writing from/to S3 and also running Sagemaker services.
    • INSTANCE_COUNT
    • INSTANCE_TYPE

API Gateway

  1. Create a public REST API (Regional).
  2. For each endpoint in api/main.py… add a resource.
  3. For each created method add an ANY method:
    • Select lambda function.
    • Select Use Lambda Proxy Integration.
    • Introduce the name of the lambda function linked to that resource.
    • Once the method is created select Method Request and set API key required to true.
  4. Deploy the API.

Usage plan

  1. Create a usage plan based on your needs.
  2. Add your API stage.

API Keys

  1. Generate API keys as needed.

Deployment

GitHub secrets

  1. Set the following secrets in your repo:
    • AWS_ACCESS_KEY_ID
    • AWS_SECRET_ACCESS_KEY
    • AWS_DEFAULT_REGION
Owner
Nixtla
Open Source Time Series Forecasting
Nixtla
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Course files for "Ocean/Atmosphere Time Series Analysis"

time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an

Jonathan Lilly 107 Nov 29, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022