Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Related tags

Deep LearningIIC
Overview

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework

Official code for paper, Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework [ACMMM'20].

Arxiv paper Project page

Requirements

This is my experimental enviroment.

  • PyTorch 1.3.0

It seems that PyTorch 1.7.0 is not compatible with current codes, causing poor performance. #9

  • python 3.7.4
  • accimage

Inter-intra contrastive (IIC) framework

For samples, we have

  • Inter-positives: samples with same labels, not used for self-supervised learning;
  • Inter-negatives: different samples, or samples with different indexes;
  • Intra-positives: data from the same sample, in different views / from different augmentations;
  • Intra-negatives: data from the same sample while some kind of information has been broken down. In video case, temporal information has been destoried.

Our work makes use of all usable parts (in this classification category) to form an inter-intra contrastive framework. The experiments here are mainly based on Contrastive Multiview Coding.

It is flexible to extend this framework to other contrastive learning methods which use negative samples, such as MoCo and SimCLR.

image

Highlights

Make the most of data for contrastive learning.

Except for inter-negative samples, all possible data are used to help train the network. This inter-intra learning framework can make the most use of data in contrastive learning.

Flexibility of the framework

The inter-intra learning framework can be extended to

  • Different contrastive learning methods: CMC, MoCo, SimCLR ...
  • Different intra-negative generation methods: frame repeating, frame shuffling ...
  • Different backbones: C3D, R3D, R(2+1)D, I3D ...

Updates

Oct. 1, 2020 - Results using C3D and R(2+1)D are added; fix random seed more tightly. Aug. 26, 2020 - Add pretrained weights for R3D.

Usage of this repo

Notification: we have added codes to fix random seed more tightly for better reproducibility. However, results in our paper used previous random seed settings. Therefore, there should be tiny differences for the performance from that reported in our paper. To reproduce retrieval results same as our paper, please use the provided model weights.

Data preparation

You can download UCF101/HMDB51 dataset from official website: UCF101 and HMDB51. Then decoded videos to frames.
I highly recommend the pre-computed optical flow images and resized RGB frames in this repo.

If you use pre-computed frames, the folder architecture is like path/to/dataset/video_id/frames.jpg. If you decode frames on your own, the folder architecture may be like path/to/dataset/class_name/video_id/frames.jpg, in which way, you need pay more attention to the corresponding paths in dataset preparation.

For pre-computed frames, find rgb_folder, u_folder and v_folder in datasets/ucf101.py for UCF101 datasets and change them to meet your environment. Please note that all those modalities are prepared even though in some settings, optical flow data are not used train the model.

If you do not prepare optical flow data, simply set u_folder=rgb_folder and v_folder=rgb_folder should help to avoid errors.

Train self-supervised learning part

python train_ssl.py --dataset=ucf101

This equals to

python train_ssl.py --dataset=ucf101 --model=r3d --modality=res --neg=repeat

This default setting uses frame repeating as intra-negative samples for videos. R3D is used.

We use two views in our experiments. View #1 is a RGB video clip, View #2 can be RGB/Res/Optical flow video clip. Residual video clips are default modality for View #2. You can use --modality to try other modalities. Intra-negative samples are generated from View #1.

It may be wired to use only one optical flow channel u or v. We use only one channel to make it possible for only one model to handle inputs from different modalities. It is also an optional setting that using different models to handle each modality.

Retrieve video clips

python retrieve_clips.py --ckpt=/path/to/your/model --dataset=ucf101 --merge=True

One model is used to handle different views/modalities. You can set --modality to decide which modality to use. When setting --merge=True, RGB for View #1 and the specific modality for View #2 will be jointly used for joint retrieval.

By default training setting, it is very easy to get over 30%@top1 for video retrieval in ucf101 and around 13%@top1 in hmdb51 without joint retrieval.

Fine-tune model for video recognition

python ft_classify.py --ckpt=/path/to/your/model --dataset=ucf101

Testing will be automatically conducted at the end of training.

Or you can use

python ft_classify.py --ckpt=/path/to/your/model --dataset=ucf101 --mode=test

In this way, only testing is conducted using the given model.

Note: The accuracies using residual clips are not stable for validation set (this may also caused by limited validation samples), the final testing part will use the best model on validation set.

If everything is fine, you can achieve around 70% accuracy on UCF101. The results will vary from each other with different random seeds.

Results

Retrieval results

The table lists retrieval results on UCF101 split 1. We reimplemented CMC and report its results. Other results are from corresponding paper. VCOP, VCP, CMC, PRP, and ours are based on R3D network backbone.

Method top1 top5 top10 top20 top50
Jigsaw 19.7 28.5 33.5 40.0 49.4
OPN 19.9 28.7 34.0 40.6 51.6
R3D (random) 9.9 18.9 26.0 35.5 51.9
VCOP 14.1 30.3 40.4 51.1 66.5
VCP 18.6 33.6 42.5 53.5 68.1
CMC 26.4 37.7 45.1 53.2 66.3
Ours (repeat + res) 36.5 54.1 62.9 72.4 83.4
Ours (repeat + u) 41.8 60.4 69.5 78.4 87.7
Ours (shuffle + res) 34.6 53.0 62.3 71.7 82.4
Ours (shuffle + v) 42.4 60.9 69.2 77.1 86.5
PRP 22.8 38.5 46.7 55.2 69.1
RTT 26.1 48.5 59.1 69.6 82.8
MemDPC-RGB 20.2 40.4 52.4 64.7 -
MemDPC-Flow 40.2 63.2 71.9 78.6 -

Recognition results

We only use R3D as our network backbone. In this table, all reported results are pre-trained on UCF101.

Usually, 1. using Resnet-18-3D, R(2+1)D or deeper networks; 2.pre-training on larger datasets; 3. using larger input resolutions; 4. combining with audios or other features will also help.

Method UCF101 HMDB51
Jigsaw 51.5 22.5
O3N (res) 60.3 32.5
OPN 56.3 22.1
OPN (res) 71.8 36.7
CrossLearn 58.7 27.2
CMC (3 views) 59.1 26.7
R3D (random) 54.5 23.4
ImageNet-inflated 60.3 30.7
3D ST-puzzle 65.8 33.7
VCOP (R3D) 64.9 29.5
VCOP (R(2+1)D) 72.4 30.9
VCP (R3D) 66.0 31.5
Ours (repeat + res, R3D) 72.8 35.3
Ours (repeat + u, R3D) 72.7 36.8
Ours (shuffle + res, R3D) 74.4 38.3
Ours (shuffle + v, R3D) 67.0 34.0
PRP (R3D) 66.5 29.7
PRP (R(2+1)D) 72.1 35.0

Residual clips + 3D CNN The residual clips with 3D CNNs are effective, especially for scratch training. More information about this part can be found in Rethinking Motion Representation: Residual Frames with 3D ConvNets for Better Action Recognition (previous but more detailed version) and Motion Representation Using Residual Frames with 3D CNN (short version with better results).

The key code for this part is

shift_x = torch.roll(x,1,2)
x = ((shift_x -x) + 1)/2

which is slightly different from that in papers.

We also reimplement VCP in this repo. By simply using residual clips, significant improvements can be obtained for both video retrieval and video recognition.

Pretrained weights

Pertrained weights from self-supervised training step: R3D(google drive).

With this model, for video retrieval, you should achieve

  • 33.4% @top1 with --modality=res --merge=False
  • 34.8% @top1 with --modality=rgb --merge=False
  • 36.5% @top1 with--modality=res --merge=True

Finetuned weights for action recognition: R3D(google drive).

With this model, for video recognition, you should achieve 72.7% @top1 with python ft_classify.py --model=r3d --modality=res --mode=test -ckpt=./path/to/model --dataset=ucf101 --split=1. This result is better than that reported in paper. Results may be further improved with strong data augmentations.

For any questions, please contact Li TAO ([email protected]).

Results for other network architectures

Results are averaged on 3 splits without using optical flow. R3D and R21D are the same as VCOP / VCP / PRP.

UCF101 top1 top5 top10 top20 top50 Recong
C3D (VCOP) 12.5 29.0 39.0 50.6 66.9 65.6
C3D (VCP) 17.3 31.5 42.0 52.6 67.7 68.5
C3D (PRP) 23.2 38.1 46.0 55.7 68.4 69.1
C3D (ours, repeat) 31.9 48.2 57.3 67.1 79.1 70.0
C3D (ours, shuffle) 28.9 45.4 55.5 66.2 78.8 69.7
R21D (VCOP) 10.7 25.9 35.4 47.3 63.9 72.4
R21D (VCP) 19.9 33.7 42.0 50.5 64.4 66.3
R21D (PRP) 20.3 34.0 41.9 51.7 64.2 72.1
R21D (ours, repeat) 34.7 51.7 60.9 69.4 81.9 72.4
R21D (ours, shuffle) 30.2 45.6 55.0 64.4 77.6 73.3
Res18-3D (ours, repeat) 36.8 54.1 63.1 72.0 83.3 72.4
Res18-3D (ours, shuffle) 33.0 49.2 59.1 69.1 80.6 73.1
HMDB51 top1 top5 top10 top20 top50 Recong
C3D (VCOP) 7.4 22.6 34.4 48.5 70.1 28.4
C3D (VCP) 7.8 23.8 35.3 49.3 71.6 32.5
C3D (PRP) 10.5 27.2 40.4 56.2 75.9 34.5
C3D (ours, repeat) 9.9 29.6 42.0 57.3 78.4 30.8
C3D (ours, shuffle) 11.5 31.3 43.9 60.1 80.3 29.7
R21D (VCOP) 5.7 19.5 30.7 45.6 67.0 30.9
R21D (VCP) 6.7 21.3 32.7 49.2 73.3 32.2
R21D (PRP) 8.2 25.3 36.2 51.0 73.0 35.0
R21D (ours, repeat) 12.7 33.3 45.8 61.6 81.3 34.0
R21D (ours, shuffle) 12.6 31.9 44.2 59.9 80.7 31.2
Res18-3D (ours, repeat) 15.5 34.4 48.9 63.8 83.8 34.3
Res18-3D (ours, shuffle) 12.4 33.6 46.9 63.2 83.5 34.3

Citation

If you find our work helpful for your research, please consider citing the paper

@article{tao2020selfsupervised,
    title={Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework},
    author={Li Tao and Xueting Wang and Toshihiko Yamasaki},
    journal={arXiv preprint arXiv:2008.02531},
    year={2020},
    eprint={2008.02531},
}

If you find the residual input helpful for video-related tasks, please consider citing the paper

@article{tao2020rethinking,
  title={Rethinking Motion Representation: Residual Frames with 3D ConvNets for Better Action Recognition},
  author={Tao, Li and Wang, Xueting and Yamasaki, Toshihiko},
  journal={arXiv preprint arXiv:2001.05661},
  year={2020}
}

@article{tao2020motion,
  title={Motion Representation Using Residual Frames with 3D CNN},
  author={Tao, Li and Wang, Xueting and Yamasaki, Toshihiko},
  journal={arXiv preprint arXiv:2006.13017},
  year={2020}
}

Acknowledgements

Part of this code is inspired by CMC and VCOP.

Owner
Li Tao
Li Tao
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
πŸ“ Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Rotary Transformer

[δΈ­ζ–‡|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
HyperaPy: An automatic hyperparameter optimization framework βš‘πŸš€

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022