MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Related tags

Deep LearningMonoRec
Overview

MonoRec

Paper | Video (CVPR) | Video (Reconstruction) | Project Page

This repository is the official implementation of the paper:

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer*, Nan Yang*, Lukas Von Stumberg, Niclas Zeller and Daniel Cremers

CVPR 2021 (arXiv)

If you find our work useful, please consider citing our paper:

@InProceedings{wimbauer2020monorec,
  title = {{MonoRec}: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera},
  author = {Wimbauer, Felix and Yang, Nan and von Stumberg, Lukas and Zeller, Niclas and Cremers, Daniel},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021},
}

🏗️ ️ Setup

The conda environment for this project can be setup by running the following command:

conda env create -f environment.yml

🏃 Running the Example Script

We provide a sample from the KITTI Odometry test set and a script to run MonoRec on it in example/. To download the pretrained model and put it into the right place, run download_model.sh. You can manually do this by can by downloading the weights from here and unpacking the file to saved/checkpoints/monorec_depth_ref.pth. The example script will plot the keyframe, depth prediction and mask prediction.

cd example
python test_monorec.py

🗃️ Data

In all of our experiments we used the KITTI Odometry dataset for training. For additional evaluations, we used the KITTI, Oxford RobotCar, TUM Mono-VO and TUM RGB-D datasets. All datapaths can be specified in the respective configuration files. In our experiments, we put all datasets into a seperate folder ../data.

KITTI Odometry

To setup KITTI Odometry, download the color images and calibration files from the official website (around 145 GB). Instead of the given velodyne laser data files, we use the improved ground truth depth for evaluation, which can be downloaded from here.

Unzip the color images and calibration files into ../data. The lidar depth maps can be extracted into the given folder structure by running data_loader/scripts/preprocess_kitti_extract_annotated_depth.py.

For training and evaluation, we use the poses estimated by Deep Virtual Stereo Odometry (DVSO). They can be downloaded from here and should be placed under ../data/{kitti_path}/poses_dso. This folder structure is ensured when unpacking the zip file in the {kitti_path} directory.

The auxiliary moving object masks can be downloaded from here. They should be placed under ../data/{kitti_path}/sequences/{seq_num}/mvobj_mask. This folder structure is ensured when unpacking the zip file in the {kitti_path} directory.

Oxford RobotCar

To setup Oxford RobotCar, download the camera model files and the large sample from the official website. Code, as well as, camera extrinsics need to be downloaded from the official GitHub repository. Please move the content of the python folder to data_loaders/oxford_robotcar/. extrinsics/, models/ and sample/ need to be moved to ../data/oxford_robotcar/. Note that for poses we use the official visual odometry poses, which are not provided in the large sample. They need to be downloaded manually from the raw dataset and unpacked into the sample folder.

TUM Mono-VO

Unfortunately, TUM Mono-VO images are provided only in the original, distorted form. Therefore, they need to be undistorted first before fed into MonoRec. To obtain poses for the sequences, we run the publicly available version of Direct Sparse Odometry.

TUM RGB-D

The official sequences can be downloaded from the official website and need to be unpacked under ../data/tumrgbd/{sequence_name}. Note that our provided dataset implementation assumes intrinsics from fr3 sequences. Note that the data loader for this dataset also relies on the code from the Oxford Robotcar dataset.

🏋️ Training & Evaluation

Please stay tuned! Training code will be published soon!

We provide checkpoints for each training stage:

Training stage Download
Depth Bootstrap Link
Mask Bootstrap Link
Mask Refinement Link
Depth Refinement (final model) Link

Run download_model.sh to download the final model. It will automatically get moved to saved/checkpoints.

To reproduce the evaluation results on different datasets, run the following commands:

python evaluate.py --config configs/evaluate/eval_monorec.json        # KITTI Odometry
python evaluate.py --config configs/evaluate/eval_monorec_oxrc.json   # Oxford Robotcar

☁️ Pointclouds

To reproduce the pointclouds depicted in the paper and video, use the following commands:

python create_pointcloud.py --config configs/test/pointcloud_monorec.json       # KITTI Odometry
python create_pointcloud.py --config configs/test/pointcloud_monorec_oxrc.json  # Oxford Robotcar
python create_pointcloud.py --config configs/test/pointcloud_monorec_tmvo.json  # TUM Mono-VO
Owner
Felix Wimbauer
M.Sc. Computer Science, Oxford, TUM, NUS
Felix Wimbauer
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022