Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Related tags

Deep LearningHOTR
Overview


Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation)

HOTR: End-to-End Human-Object Interaction Detection with Transformers

HOTR is a novel framework which directly predicts a set of {human, object, interaction} triplets from an image using a transformer-based encoder-decoder. Through the set-level prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.

HOTR is composed of three main components: a shared encoder with a CNN backbone, a parallel decoder, and the recomposition layer to generate final HOI triplets. The overview of our pipeline is presented below.

1. Environmental Setup

$ conda create -n kakaobrain python=3.7
$ conda install -c pytorch pytorch torchvision # PyTorch 1.7.1, torchvision 0.8.2, CUDA=11.0
$ conda install cython scipy
$ pip install pycocotools
$ pip install opencv-python
$ pip install wandb

2. HOI dataset setup

Our current version of HOTR supports the experiments for V-COCO dataset. Download the v-coco dataset under the pulled directory.

# V-COCO setup
$ git clone https://github.com/s-gupta/v-coco.git
$ cd v-coco
$ ln -s [:COCO_DIR] coco/images # COCO_DIR contains images of train2014 & val2014
$ python script_pick_annotations.py [:COCO_DIR]/annotations

If you wish to download the v-coco on our own directory, simply change the 'data_path' argument to the directory you have downloaded the v-coco dataset.

--data_path [:your_own_directory]/v-coco

3. How to Train/Test HOTR on V-COCO dataset

For testing, you can either use your own trained weights and pass the directory to the 'resume' argument, or use our provided weights. Below is the example of how you should edit the Makefile.

# [Makefile]
# Testing your own trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/KakaoBrain/multi_run_000001/best.pth # the best performing checkpoint is saved in this format

# Testing our provided trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/q16.pth # download the q16.pth as described below.

In order to use our provided weights, you can download the weights from this link. Then, pass the directory of the downloaded file (for example, we put the weights under the directory checkpoints/vcoco/q16.pth) to the 'resume' argument as well.

# multi-gpu training / testing (8 GPUs)
$ make multi_[train/test]

# single-gpu training / testing
$ make single_[train/test]

4. Results

Here, we provide improved results of V-COCO Scenario 1 (58.9 mAP, 0.5ms) from the version of our initial submission (55.2 mAP, 0.9ms). This is obtained "without" applying any priors on the scores (see iCAN).

Epoch # queries Scenario 1 Scenario 2 Checkpoint
100 16 58.9 63.8 download

If you want to use pretrained weights for inference, download the pretrained weights (from the above link) under checkpoints/vcoco/ and match the interaction query argument as described in the weight file (others are already set in the Makefile). Our evaluation code follows the exact implementations of the official python v-coco evaluation. You can test the weights by the command below (e.g., the weight file is named as q16.pth, which denotes that the model uses 16 interaction queries).

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env vcoco_main.py \
    --batch_size 2 \
    --HOIDet \
    --share_enc \
    --pretrained_dec \
    --num_hoi_queries [:query_num] \
    --temperature 0.05 \ # use the exact same temperature value that you used during training!
    --object_threshold 0 \
    --no_aux_loss \
    --eval \
    --dataset_file vcoco \
    --data_path v-coco \
    --resume checkpoints/vcoco/[:query_num].pth

The results will appear as the following:

[Logger] Number of params:  51181950
Evaluation Inference (V-COCO)  [308/308]  eta: 0:00:00    time: 0.2063  data: 0.0127  max mem: 1578
[stats] Total Time (test) : 0:01:05 (0.2114 s / it)
[stats] HOI Recognition Time (avg) : 0.5221 ms
[stats] Distributed Gathering Time : 0:00:49
[stats] Score Matrix Generation completed

============= AP (Role scenario_1) ==============
               hold_obj: AP = 48.99 (#pos = 3608)
              sit_instr: AP = 47.81 (#pos = 1916)
             ride_instr: AP = 67.04 (#pos = 556)
               look_obj: AP = 40.57 (#pos = 3347)
              hit_instr: AP = 76.42 (#pos = 349)
                hit_obj: AP = 71.27 (#pos = 349)
                eat_obj: AP = 55.75 (#pos = 521)
              eat_instr: AP = 67.57 (#pos = 521)
             jump_instr: AP = 71.44 (#pos = 635)
              lay_instr: AP = 57.09 (#pos = 387)
    talk_on_phone_instr: AP = 49.07 (#pos = 285)
              carry_obj: AP = 34.75 (#pos = 472)
              throw_obj: AP = 52.37 (#pos = 244)
              catch_obj: AP = 48.80 (#pos = 246)
              cut_instr: AP = 49.58 (#pos = 269)
                cut_obj: AP = 57.02 (#pos = 269)
 work_on_computer_instr: AP = 67.44 (#pos = 410)
              ski_instr: AP = 49.35 (#pos = 424)
             surf_instr: AP = 77.07 (#pos = 486)
       skateboard_instr: AP = 86.44 (#pos = 417)
            drink_instr: AP = 38.67 (#pos = 82)
               kick_obj: AP = 73.92 (#pos = 180)
               read_obj: AP = 44.81 (#pos = 111)
        snowboard_instr: AP = 81.25 (#pos = 277)
| mAP(role scenario_1): 58.94
----------------------------------------------------

The HOI recognition time is calculated by the end-to-end inference time excluding the object detection time.

5. Auxiliary Loss

HOTR follows the auxiliary loss of DETR, where the loss between the ground truth and each output of the decoder layer is also computed. The ground-truth for the auxiliary outputs are matched with the ground-truth HOI triplets with our proposed Hungarian Matcher.

6. Temperature Hyperparameter, tau

Based on our experimental results, the temperature hyperparameter is sensitive to the number of interaction queries and the coefficient for the index loss and index cost, and the number of decoder layers. Empirically, a larger number of queries require a larger tau, and a smaller coefficient for the loss and cost for HO Pointers requires a smaller tau (e.g., for 16 interaction queries, tau=0.05 for the default set_cost_idx=1, hoi_idx_loss_coef=1, hoi_act_loss_coef=10 shows the best result). The initial version of HOTR (with 55.2 mAP) has been trained with 100 queries, which required a larger tau (tau=0.1). There might be better results than the tau we used in our paper according to these three factors. Feel free to explore yourself!

7. Citation

If you find this code helpful for your research, please cite our paper.

@inproceedings{kim2021hotr,
  title={HOTR: End-to-End Human-Object Interaction Detection with Transformers},
  author    = {Bumsoo Kim and
               Junhyun Lee and
               Jaewoo Kang and
               Eun-Sol Kim and
               Hyunwoo J. Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

8. Contact for Issues

Bumsoo Kim, [email protected]

9. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022