PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Overview

PyTorch framework

一个简单且完整的PyTorch的框架,提供了各种数据的加载以及简单任务的解决方案,易于扩展和迁移。

1.该框架提供了各种数据类型的加载(.wav .mat .jpg .csv .npy)方案。

2.该框架提供了简单分类任务和回归任务的解决方案,以及几个基础模型:CNN、RNN、Attention (ResNet、LSTM、Transformer-encoder)

3.该框架是一个简单且完整的框架,只保留了必要的部分并有详细的注释,方便阅读和理解。

并且解耦了各个模块,易于扩展和迁移。迁移到其他任务上只需要更改dataloader和model部分 (还有损失函数)。

用法:

训练和验证

python main.py --dataset_path ./data/audio/wav2vec/ --model_path  wav2vec --feature wav2vec --feature_dim 768 --task regression --model lstm

python main.py --dataset_path ./data/vision/AU/ --model_path  AU --feature AU --feature_dim 34 --task regression --model lstm

python main.py --dataset_path ./data/vision/vggface/ --model_path  vggface --feature vggface --feature_dim 128 --task regression --model lstm

python main.py --dataset_path ./data/vision/image/ --model_path  image --feature image  --task classification --model resnet

测试

python test.py --dataset_path ./data/audio/wav2vec/ --model_path  ./model/wav2vec_regression_1.pth --feature wav2vec --feature_dim 768 --task regression --model lstm

多卡训练

CUDA_VISIBLE_DEVICES=0,1 python main.py --dataset_path ./data/vision/image/ --model_path  image --feature image  --task classification --model resnet --parallel

CUDA_VISIBLE_DEVICE 和 parallel 搭配使用,单用 parallel 会默认使用所有卡。






如果有任何问题,欢迎联系我([email protected])

Owner
Cong Cai
Cong Cai
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

Phil Wang 900 Dec 22, 2022
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
Pytorch bindings for Fortran

Pytorch bindings for Fortran

Dmitry Alexeev 46 Dec 29, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
270 Dec 24, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022