A python package to perform same transformation to coco-annotation as performed on the image.

Overview

coco-transform-util

A python package to perform same transformation to coco-annotation as performed on the image.

Installation

Way 1

$ git clone https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
$ cd coco-transform-util
$ python3 setup.py install

Way 2

$ pip3 install git+https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
<<< Username: <[email protected]>
<<< Password: <personal access token or SSH key>

Personal Access token looks like this 83b318cg875a5g302e5fdaag74afc8ceb6a91a2e.

Reference: How to generate Personal Access token

Check installation

import ctu
print(ctu.__version__)

Benefits and Use Cases

  1. Faster Model Training: Decrease the size of images and accordingly its annotation will be changed using this.
  2. Flexibility: Rescaling of images and annotations to meet the need of Model/Framework.
  3. Cost Saving: Lesser Computation requirement as images can be downscaled.
  4. Interpretability: Annotation Visualization is also a part of this package.
  5. Data Augmentation: <more practical in future>
  6. Ability to handle other cases: Added Functionality such as cropping or padding of the annotation can help in multiple other cases such as:
    • cropping out each object image & annotation from an original image
    • cropping unnecessary area to zoom in on some particular area.
    • converting images to 1:1 aspect ratio by using padding and/or cropping.

How to use it?

Core

There are four core modules inside that helps in performing operations on COCO Annotation. These can imported as shown below:

from ctu import WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize, AggreagateCoco  

It's recommended that you have look at samples/example_core_modules.py to understand and explore how to use these.

Wrapper

Making use of wrappers can also come in handly to perform multiple operations in a much simpler and interpretable manner using the functions provided below:

from ctu import (
    sample_modif_step_di, get_modif_imag, get_modif_coco_annotation, 
    accept_and_process_modif_di, ImgTransform, Visualize
)

It's recommended that you have look at samples/example_highlevel_function.py to understand and explore how to use these.

Some sample data has also been provided with this package at example_data/* to explore these functionalities.

Demo / Sample

A sample HTML created from Jupyter-Notebook, contating some sample results has been added to the path samples/Demo-SampleOutput.html.

Version History

  • v0.1: Core Modules: WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize. External Dependency on AMLEET package.
  • v0.2: Removed the dependency on AMLEET package. Develop Core Module: AggreagateCoco. Addition of field "area" under "annotations" in coco.
  • v0.3: Completed: Remove the out of frame coordinates in annotation. Update & add fields in "annotation" > "images". Ability to create transparent and general mask create_mask. In Development: Ability to export transformed image, mask and annotation per image wise and as a whole too.

Future

  • Update the image fields in "images" key. (done)
  • Crop out the annotation which are out-of-frame based on recent image shape. (done)
  • Annotation Visualization + Mask creation can become a core feature to this library. (done)
  • Rotate 90 degree left/right.
  • Flip horizontally or vertically.
  • COCO to other annotation format can also be a feature to this package.
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022