A pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database

Overview

https://raw.githubusercontent.com/ClearcodeHQ/pytest-postgresql/master/logo.png

pytest-postgresql

Latest PyPI version Wheel Status Supported Python Versions License

What is this?

This is a pytest plugin, that enables you to test your code that relies on a running PostgreSQL Database. It allows you to specify fixtures for PostgreSQL process and client.

How to use

Warning

Tested on PostgreSQL versions >= 10. See tests for more details.

Install with:

pip install pytest-postgresql

You will also need to install psycopg. See its installation instructions.

Plugin contains three fixtures:

  • postgresql - it's a client fixture that has functional scope. After each test it ends all leftover connections, and drops test database from PostgreSQL ensuring repeatability. This fixture returns already connected psycopg connection.
  • postgresql_proc - session scoped fixture, that starts PostgreSQL instance at it's first use and stops at the end of the tests.
  • postgresql_noproc - a noprocess fixture, that's connecting to already running postgresql instance. For example on dockerized test environments, or CI providing postgresql services

Simply include one of these fixtures into your tests fixture list.

You can also create additional postgresql client and process fixtures if you'd need to:

from pytest_postgresql import factories

postgresql_my_proc = factories.postgresql_proc(
    port=None, unixsocketdir='/var/run')
postgresql_my = factories.postgresql('postgresql_my_proc')

Note

Each PostgreSQL process fixture can be configured in a different way than the others through the fixture factory arguments.

Sample test

def test_example_postgres(postgresql):
    """Check main postgresql fixture."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

If you want the database fixture to be automatically populated with your schema there are two ways:

  1. client fixture specific
  2. process fixture specific

Both are accepting same set of possible loaders:

  • sql file path
  • loading function import path (string)
  • actual loading function

That function will receive host, port, user, dbname and password kwargs and will have to perform connection to the database inside. However, you'll be able to run SQL files or even trigger programmatically database migrations you have.

Client specific loads the database each test

postgresql_my_with_schema = factories.postgresql(
    'postgresql_my_proc',
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)

Warning

This way, the database will still be dropped each time.

The process fixture performs the load once per test session, and loads the data into the template database. Client fixture then creates test database out of the template database each test, which significantly speeds up the tests.

postgresql_my_proc = factories.postgresql_proc(
    load=["schemafile.sql", "otherschema.sql", "import.path.to.function", "import.path.to:otherfunction", load_this]
)
pytest --postgresql-populate-template=path.to.loading_function --postgresql-populate-template=path.to.other:loading_function --postgresql-populate-template=path/to/file.sql

The loading_function from example will receive , and have to commit that. Connecting to already existing postgresql database --------------------------------------------------

Some projects are using already running postgresql servers (ie on docker instances). In order to connect to them, one would be using the postgresql_noproc fixture.

postgresql_external = factories.postgresql('postgresql_noproc')

By default the postgresql_noproc fixture would connect to postgresql instance using 5432 port. Standard configuration options apply to it.

These are the configuration options that are working on all levels with the postgresql_noproc fixture:

Configuration

You can define your settings in three ways, it's fixture factory argument, command line option and pytest.ini configuration option. You can pick which you prefer, but remember that these settings are handled in the following order:

  • Fixture factory argument
  • Command line option
  • Configuration option in your pytest.ini file
Configuration options
PostgreSQL option Fixture factory argument Command line option pytest.ini option Noop process fixture Default
Path to executable executable --postgresql-exec postgresql_exec
/usr/lib/postgresql/13/bin/pg_ctl
host host --postgresql-host postgresql_host yes 127.0.0.1
port port --postgresql-port postgresql_port yes (5432) random
postgresql user user --postgresql-user postgresql_user yes postgres
password password --postgresql-password postgresql_password yes  
Starting parameters (extra pg_ctl arguments) startparams --postgresql-startparams postgresql_startparams
-w
Postgres exe extra arguments (passed via pg_ctl's -o argument) postgres_options --postgresql-postgres-options postgresql_postgres_options
 
Log filename's prefix logsprefix --postgresql-logsprefix postgresql_logsprefix
 
Location for unixsockets unixsocket --postgresql-unixsocketdir postgresql_unixsocketdir
$TMPDIR
Database name dbname --postgresql-dbname postgresql_dbname yes, however with xdist an index is being added to name, resulting in test0, test1 for each worker. test
Default Schema either in sql files or import path to function that will load it (list of values for each) load --postgresql-load postgresql_load yes  
PostgreSQL connection options options --postgresql-options postgresql_options yes  

Example usage:

  • pass it as an argument in your own fixture

    postgresql_proc = factories.postgresql_proc(
        port=8888)
  • use --postgresql-port command line option when you run your tests

    py.test tests --postgresql-port=8888
    
  • specify your port as postgresql_port in your pytest.ini file.

    To do so, put a line like the following under the [pytest] section of your pytest.ini:

    [pytest]
    postgresql_port = 8888

Examples

Populating database for tests

With SQLAlchemy

This example shows how to populate database and create an SQLAlchemy's ORM connection:

Sample below is simplified session fixture from pyramid_fullauth tests:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.pool import NullPool
from zope.sqlalchemy import register


@pytest.fixture
def db_session(postgresql):
    """Session for SQLAlchemy."""
    from pyramid_fullauth.models import Base

    connection = f'postgresql+psycopg2://{postgresql.info.user}:@{postgresql.info.host}:{postgresql.info.port}/{postgresql.info.dbname}'

    engine = create_engine(connection, echo=False, poolclass=NullPool)
    pyramid_basemodel.Session = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
    pyramid_basemodel.bind_engine(
        engine, pyramid_basemodel.Session, should_create=True, should_drop=True)

    yield pyramid_basemodel.Session

    transaction.commit()
    Base.metadata.drop_all(engine)


@pytest.fixture
def user(db_session):
    """Test user fixture."""
    from pyramid_fullauth.models import User
    from tests.tools import DEFAULT_USER

    new_user = User(**DEFAULT_USER)
    db_session.add(new_user)
    transaction.commit()
    return new_user


def test_remove_last_admin(db_session, user):
    """
    Sample test checks internal login, but shows usage in tests with SQLAlchemy
    """
    user = db_session.merge(user)
    user.is_admin = True
    transaction.commit()
    user = db_session.merge(user)

    with pytest.raises(AttributeError):
        user.is_admin = False

Note

See the original code at pyramid_fullauth's conftest file. Depending on your needs, that in between code can fire alembic migrations in case of sqlalchemy stack or any other code

Maintaining database state outside of the fixtures

It is possible and appears it's used in other libraries for tests, to maintain database state with the use of the pytest-postgresql database managing functionality:

For this import DatabaseJanitor and use its init and drop methods:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    janitor = DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
    janitor.init()
    yield psycopg2.connect(
        dbname="my_test_database",
        user=postgresql_proc.user,
        password="secret_password",
        host=postgresql_proc.host,
        port=postgresql_proc.port,
    )
    janitor.drop()

or use it as a context manager:

import pytest
from pytest_postgresql.janitor import DatabaseJanitor

@pytest.fixture
def database(postgresql_proc):
    # variable definition

    with DatabaseJanitor(
        postgresql_proc.user,
        postgresql_proc.host,
        postgresql_proc.port,
        "my_test_database",
        postgresql_proc.version,
        password="secret_password,
    ):
        yield psycopg2.connect(
            dbname="my_test_database",
            user=postgresql_proc.user,
            password="secret_password",
            host=postgresql_proc.host,
            port=postgresql_proc.port,
        )

Note

DatabaseJanitor manages the state of the database, but you'll have to create connection to use in test code yourself.

You can optionally pass in a recognized postgresql ISOLATION_LEVEL for additional control.

Note

See DatabaseJanitor usage in python's warehouse test code https://github.com/pypa/warehouse/blob/5d15bfe/tests/conftest.py#L127

Connecting to Postgresql (in a docker)

To connect to a docker run postgresql and run test on it, use noproc fixtures.

docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres

This will start postgresql in a docker container, however using a postgresql installed locally is not much different.

In tests, make sure that all your tests are using postgresql_noproc fixture like that:

postgresql_in_docker = factories.postgresql_noproc()
postresql = factories.postgresql("postgresql_in_docker", db_name="test")


def test_postgres_docker(postresql):
    """Run test."""
    cur = postgresql.cursor()
    cur.execute("CREATE TABLE test (id serial PRIMARY KEY, num integer, data varchar);")
    postgresql.commit()
    cur.close()

And run tests:

pytest --postgresql-host=172.17.0.2 --postgresql-password=mysecretpassword

Using a common database initialisation between tests

If you've got several tests that require common initialisation, you need to define a load and pass it to your custom postgresql process fixture:

import pytest_postgresql.factories
def load_database(**kwargs):
    db_connection: connection = psycopg2.connect(**kwargs)
    with db_connection.cursor() as cur:
        cur.execute("CREATE TABLE stories (id serial PRIMARY KEY, name varchar);")
        cur.execute(
            "INSERT INTO stories (name) VALUES"
            "('Silmarillion'), ('Star Wars'), ('The Expanse'), ('Battlestar Galactica')"
        )
        db_connection.commit()

postgresql_proc = factories.postgresql_proc(
    load=[load_database],
)

postgresql = factories.postgresql(
    "postgresql_proc",
)

You can also define your own database name by passing same dbname value to both factories.

The way this will work is that the process fixture will populate template database, which in turn will be used automatically by client fixture to create a test database from scratch. Fast, clean and no dangling transactions, that could be accidentally rolled back.

Same approach will work with noproces fixture, while connecting to already running postgresql instance whether it'll be on a docker machine or running remotely or locally.

Owner
Clearcode
Software house with a passion for technology. We specialize in building enterprise-grade adtech, martech and analytics platforms.
Clearcode
Donors data of Tamil Nadu Chief Ministers Relief Fund scrapped from https://ereceipt.tn.gov.in/cmprf/Interface/CMPRF/MonthWiseReport

Tamil Nadu Chief Minister's Relief Fund Donors Scrapped data from https://ereceipt.tn.gov.in/cmprf/Interface/CMPRF/MonthWiseReport Scrapper scrapper.p

Arunmozhi 5 May 18, 2021
Network automation lab using nornir, scrapli, and containerlab with Arista EOS

nornir-scrapli-eos-lab Network automation lab using nornir, scrapli, and containerlab with Arista EOS. Objectives Deploy base configs to 4xArista devi

Vireak Ouk 13 Jul 07, 2022
Pynguin, The PYthoN General UnIt Test geNerator is a test-generation tool for Python

Pynguin, the PYthoN General UnIt test geNerator, is a tool that allows developers to generate unit tests automatically.

Chair of Software Engineering II, Uni Passau 997 Jan 06, 2023
A library for generating fake data and populating database tables.

Knockoff Factory A library for generating mock data and creating database fixtures that can be used for unit testing. Table of content Installation Ch

Nike Inc. 30 Sep 23, 2022
Run ISP speed tests and save results

SpeedMon Automatically run periodic internet speed tests and save results to a variety of storage backends. Supported Backends InfluxDB v1 InfluxDB v2

Matthew Carey 9 May 08, 2022
Command line driven CI frontend and development task automation tool.

tox automation project Command line driven CI frontend and development task automation tool At its core tox provides a convenient way to run arbitrary

tox development team 3.1k Jan 04, 2023
Set your Dynaconf environment to testing when running pytest

pytest-dynaconf Set your Dynaconf environment to testing when running pytest. Installation You can install "pytest-dynaconf" via pip from PyPI: $ pip

David Baumgold 3 Mar 11, 2022
Implement unittest, removing all global variable and returning values

Implement unittest, removing all global variable and returning values

Placide 1 Nov 01, 2021
Active Directory Penetration Testing methods with simulations

AD penetration Testing Project By Ruben Enkaoua - GL4Di4T0R Based on the TCM PEH course (Heath Adams) Index 1 - Setting Up the Lab Intallation of a Wi

GL4DI4T0R 3 Aug 12, 2021
Automated Security Testing For REST API's

Astra REST API penetration testing is complex due to continuous changes in existing APIs and newly added APIs. Astra can be used by security engineers

Flipkart Incubator 2.1k Dec 31, 2022
Declarative HTTP Testing for Python and anything else

Gabbi Release Notes Gabbi is a tool for running HTTP tests where requests and responses are represented in a declarative YAML-based form. The simplest

Chris Dent 139 Sep 21, 2022
pytest plugin providing a function to check if pytest is running.

pytest-is-running pytest plugin providing a function to check if pytest is running. Installation Install with: python -m pip install pytest-is-running

Adam Johnson 21 Nov 01, 2022
UUM Merit Form Filler is a web automation which helps automate entering a matric number to the UUM system in order for participants to obtain a merit

About UUM Merit Form Filler UUM Merit Form Filler is a web automation which helps automate entering a matric number to the UUM system in order for par

Ilham Rachmat 3 May 31, 2022
Python scripts for a generic performance testing infrastructure using Locust.

TODOs Reference to published paper or online version of it loadtest_plotter.py: Cleanup and reading data from files ARS_simulation.py: Cleanup, docume

Juri Tomak 3 Dec 15, 2022
This repository contnains sample problems with test cases using Cormen-Lib

Cormen Lib Sample Problems Description This repository contnains sample problems with test cases using Cormen-Lib. These problems were made for the pu

Cormen Lib 3 Jun 30, 2022
Just a small test with lists in cython

Test for lists in cython Algorithm create a list of 10^4 lists each with 10^4 floats values (namely: 0.1) - 2 nested for iterate each list and compute

Federico Simonetta 32 Jul 23, 2022
Subprocesses for Humans 2.0.

Delegator.py — Subprocesses for Humans 2.0 Delegator.py is a simple library for dealing with subprocesses, inspired by both envoy and pexpect (in fact

Amit Tripathi 1.6k Jan 04, 2023
To automate the generation and validation tests of COSE/CBOR Codes and it's base45/2D Code representations

To automate the generation and validation tests of COSE/CBOR Codes and it's base45/2D Code representations, a lot of data has to be collected to ensure the variance of the tests. This respository was

160 Jul 25, 2022
A Proof of concept of a modern python CLI with click, pydantic, rich and anyio

httpcli This project is a proof of concept of a modern python networking cli which can be simple and easy to maintain using some of the best packages

Kevin Tewouda 17 Nov 15, 2022
Free cleverbot without headless browser

Cleverbot Scraper Simple free cleverbot library that doesn't require running a heavy ram wasting headless web browser to actually chat with the bot, a

Matheus Fillipe 3 Sep 25, 2022