Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

Overview

CIRPLANT

This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

For details please see our ICCV 2021 paper - Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models.

Demo image from CIRR data

If you find this repository useful, we would appreciate it if you could give us a star.

You are currently viewing the code & model repository. For more information, see our Project homepage.

Introduction

CIRPLANT is a transformer based model that leverages rich pre-trained vision-and-language (V&L) knowledge for modifying visual features conditioned on natural language. To the best of our knowledge, this is the first attempt in repurposing a V&L pre-trained (VLP) model for composed image retrieval- a task that requires language-conditioned image feature modification.

Our intention is to extend current methods to the open-domain. Together with the release of the CIRR dataset, we hope this work can inspire further research on composed image retrieval

Installation & Dataset Preparation

Check INSTALL.md for installation instructions.

Training

To train the model and reproduce our published results on CIRR:

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition

To use pre-trained weights to reproduce results in our ICCV 2021 paper, please see DOWNLOAD.md.

Developing

To develop based on our code, we highly recommend first getting familar with Pytorch Lightning.

You can train models as we have described above, the results will be saved to a folder of your choosing.

To inspect results, we recommend using Tensorboard and load the saved events.out.tfevents file. Alternatively, you can also find all information dumped to a text file log.txt.

Pytorch Lightning automatically saves the latest checkpoint last.ckpt in the same output directory. Additionally, you can also specify a certain validation score name --log_by [...] to monitor, which enables saving of the best checkpoint.

Test-split Evaluation

We do not publish the ground truth for the test split of CIRR. Instead, we host an evaluation server, should you prefer to publish results on the test-split.

To generate .json files and upload to the test server, load a trained checkpoint and enable --testonly.

As an example, compare the following arguments with the training arguments above.

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition --check_val_every_n_epoch 1 --testonly --load_from_checkpoint $CKPT_PATH

Two .json files will be saved to the output directory, one for Recall validation, the other for Recall_Subset. Visit our test server and upload it to get results.

Citation

Please consider citing this paper if you use the code:

@article{liu2021cirr,
      title={Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models}, 
      author={Zheyuan Liu and Cristian Rodriguez-Opazo and Damien Teney and Stephen Gould},
      journal={arXiv preprint arXiv:2108.04024},
      year={2021},
}
Owner
Zheyuan (David) Liu
長い夢見る心はそう 永遠で
Zheyuan (David) Liu
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022