Lingtrain Aligner — ML powered library for the accurate texts alignment.

Overview

Lingtrain Aligner

ML powered library for the accurate texts alignment in different languages.

Cover

Purpose

Main purpose of this alignment tool is to build parallel corpora using two or more raw texts in different languages. Texts should contain the same information (i.e., one text should be a translated analog oh the other text). E.g., it can be the Drei Kameraden by Remarque in German and the Three Comrades — it's translation into English.

Process

There are plenty of obstacles during the alignment process:

  • The translator could translate several sentences as one.
  • The translator could translate one sentence as many.
  • There are some service marks in the text
    • Page numbers
    • Chapters and other section headings
    • Author and title information
    • Notes

While service marks can be handled manually (the tool helps to detect them), the translation conflicts should be handled more carefully.

Lingtrain Aligner tool will do almost all alignment work for you. It matches the sentence pairs automatically using the multilingual machine learning models. Then it searches for the alignment conflicts and resolves them. As output you will have the parallel corpora either as two distinct plain text files or as the merged corpora in widely used TMX format.

Supported languages and models

Automated alignment process relies on the sentence embeddings models. Embeddings are multidimensional vectors of a special kind which are used to calculate a distance between the sentences. Supported languages list depend on the selected backend model.

  • distiluse-base-multilingual-cased-v2
    • more reliable and fast
    • moderate weights size — 500MB
    • supports 50+ languages
    • full list of supported languages can be found in this paper
  • LaBSE (Language-agnostic BERT Sentence Embedding)
    • can be used for rare languages
    • pretty heavy weights — 1.8GB
    • supports 100+ languages
    • full list of supported languages can be found here

Profit

  • Parallel corpora by itself can used as the resource for machine translation models or for linguistic researches.
  • My personal goal of this project is to help people building parallel translated books for the foreign language learning.
You might also like...
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Text Classification in Turkish Texts with Bert
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Comments
  • File Already Exists

    File Already Exists

    Делаю docker pull lingtrain/aligner:v4 Загружаю текстовый файл и...

    image

    После вот такого предупреждения ничего не происходит Причём оно вылазит на любой текстовый файл

    opened by puffofsmoke 1
  • Fix XML creation:

    Fix XML creation:

    • prevent parent tag duplication for (langs, author, title)
    • add tags for tmx export
    • use 'direction' for splitting paragraphs
    • do not use bs4 (generates incorrect xml), change to lxml
    opened by BorisNA 0
  • A error when I use “splitter.split_by_sentences_wrapper”,please help check the error

    A error when I use “splitter.split_by_sentences_wrapper”,please help check the error

    when I use “splitted_from = splitter.split_by_sentences_wrapper(text1_prepared, lang_from)” return list,

    But I see that there will be a conflict when insert sqlite ,specific error:

    File "ling_test.py", line 36, in aligner.fill_db(db_path, splitted_from, splitted_to) File "lingtrain_aligner/aligner.py", line 498, in fill_db db.executemany("insert into languages(key, val) values(?,?)", [("from", lang_from), ("to", lang_to)]) sqlite3.InterfaceError: Error binding parameter 1 - probably unsupported type.

    opened by Amen-bang 5
  • Add text splitting into small parts

    Add text splitting into small parts

    The current version ignores the H1-H5 headers that were added by user. But when book was translate text from chapter 1 will be translate as a chapter 1 text into another language. You can use this fact and split a big text to small parts.

    Next idea - try split a big text to small blocks automatically: Select a few sentences from original text(for example 10 sentences) and using loop try to find translate block in the thanslated text.

    You can use the next psedocode:

    left_array = original_sentences[100:110]
    sum=[]
    for i=50;i<150 do:
       right_array_candidate=translated_sentences[i:i+10]
       sum[i]=sum(cosunuse_distance(left_array,right_array_candidate))
    
    rigth_array=get_index_with_max_value(sum)
    
    left_text_split_index=left_array[0]
    rigth_text_split_index=rigth_array[0]
    
    opened by AigizK 0
Releases(0.1.0)
Owner
Sergei Averkiev
Software Engineer. Eager to learn languages and machine learning approaches. Live in Moscow.
Sergei Averkiev
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
A simple Speech Emotion Recognition (SER) API created using Flask and running in a Docker container.

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

2 Nov 11, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022