Mutual Fund Recommender System. Tailor for fund transactions.

Overview

Explainable Mutual Fund Recommendation

Data

Please see 'DATA_DESCRIPTION.md' for mode detail.

Recommender System Methods

Baseline

  • Collabarative Fiiltering
  • PersonFreq
  • PersonVolume

Stable

  • LightFM Meta
  • LightFM PureCF
  • LightFM Hybrid

Advanced

  • DGL
  • GCN

Part I: Fund Recommedation

Training

Supported models
  1. Heuristic
  2. LightFM (CF/Hybrid/Meta)
  3. SMORe
# Process 3 models in parallel
bash run_all.sh 
   

   
Arugments

You can also tune the detail parameter settings of each method in training pipeline.

--use_heuristic ">
# Commonly used arguments 
--model 
    
     
--model_type 
     
      
--model_hidden_dimension 
      
       
--evaluation_metrics 
       
        
--use_heuristic 
         
        
       
      
     
    

For example, LightFM with pure-CF method

EPOCHS=10
EMBED_SIZE=64
DATE=20181231

python3 train.py \
   --path_transaction data/${DATE}/transaction_train.csv \
   --path_transaction_eval data/${DATE}/transaction_eval.csv \
   --path_user data/${DATE}/customer.csv \
   --path_item data/${DATE}/product.csv \
   --model 'LightFM' \
   --model_path 'models/lightfm' \
   --model_type 'cf' \
   --model_hidden_dimension ${EMBED_SIZE} \
   --model_max_neg_sample 100 \
   --model_loss 'warp' \
   --training_do_evaluation \
   --training_verbose \
   --training_num_epochs ${EPOCHS} \
   --training_eval_per_epochs 1 \
   --evaluation_diff \
   --evaluation_regular \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --use_heuristic 'frequency' \
   --use_heuristic 'volume' \
   --evaluation_results_csv results/lightfm_cf_evaluation_${DATE}.csv \
   --evaluation_rec_detail_report results/lightfm_cf_rec_detail_${DATE}.tsv \
       > logs/lightfm_cf_exp_${DATE}.log

For another example, SMORe

python3 train.py \
   --path_transaction data/${DATE}/transaction_train.csv \
   --path_transaction_eval data/${DATE}/transaction_eval.csv \
   --path_user data/${DATE}/customer.csv \
   --path_item data/${DATE}/product.csv \
   --model 'SMORe' \
   --model_path 'models/smore' \
   --model_hidden_dimension ${EMBED_SIZE} \
   --model_max_neg_sample 100 \
   --model_loss 'warp' \
   --training_do_ \
   --training_verbose \
   --training_num_epochs ${EPOCHS} \
   --training_eval_per_epochs 1 \
   --evaluation_diff \
   --evaluation_regular \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_results_csv results/smore_evaluation_${DATE}.csv \
   --evaluation_rec_detail_report results/smore_rec_detail_${DATE}.tsv \
       > logs/smore_exp_${DATE}.log

Evaluataion

To use the evaluation pipeline, you need a prediction rec file with the format like the example below:

# prediction rec file 
   
    \t
    
     \t
     
      \t
      
       \t
       
        \t
        
          CFDAXWccjJPoVInuiF0mMg== AG25 EXPLOIT SOLO 0 2 CFDAXWccjJPoVInuiF0mMg== XXXX EXPLOIT SOLO 0 1 CFDAXWccjJPoVInuiF0mMg== JJ15 EXPLOIT REGULAR 0 2 CFDAXWccjJPoVInuiF0mMg== XXXX EXPLOIT REGULAR 0 1 CFDAwH4y/ssuYSedFy8UMw== CC89 EXPLOIT REGULAR 0 2 CFDAwH4y/ssuYSedFy8UMw== XXXX EXPLOIT REGULAR 0 1 CFDA9UDJnLAm4/0txbPMVQ== AP06 EXPLORE NA 0 2 CFDA9UDJnLAm4/0txbPMVQ== XXXX EXPLORE NA 0 1 
        
       
      
     
    
   

Later you could directly use the evaluate pipeline

bash rec_convert_eval.sh 
   

   

In the evaluation pipeline, you need to convert the ground truth interaction into '.rec' format. For xample.

# truth rec file 
   
    \t
    
     \t
     
      \t
      
       \t
       
         CFDAXWccjJPoVInuiF0mMg== AG25 EXPLOIT SOLO 1.0 CFDAXWccjJPoVInuiF0mMg== JJ15 EXPLOIT REGULAR 1.0 CFDAwH4y/ssuYSedFy8UMw== CC89 EXPLOIT REGULAR 1.0 CFDA9UDJnLAm4/0txbPMVQ== AP06 EXPLORE NA 1.0 
       
      
     
    
   

Convert from the evaluation transaction (includes the preprocess pipeline) by the following code, which will save the corresponding rec file in the defined argument '--path_trainsaction_truth'

DATE=20181231
python3 convert_to_rec.py \
    --path_transaction data/${DATE}/transaction_train.csv \
    --path_transaction_eval data/${DATE}/transaction_eval.csv \
    --path_user data/${DATE}/customer.csv \
    --path_item data/${DATE}/product.csv \
    --path_transaction_truth rec/${DATE}.eval.truth.rec

And evaluate by the code "rec_eval.py"

DATE=20181231
python3 rec_eval.py \
   -truth rec/${DATE}.eval.truth.rec \ 
   -pred rec/pred.rec \     
   -metric '[email protected]' \          
   -metric '[email protected]' \          
   -metric '[email protected]' \
   -metric '[email protected]'

The results would be like

TRUTH REC FILE EXISTED:  'rec/20181231.eval.truth.rec'

EvalDict({                
          SUBSET     USERS     EXAMPLES 
        * EXPLORE    2305      2826     
        * EXPLOIT    33355     62403    
        * REGULAR    31763     59054    
        * SOLO       2747      3349                     
})
==============================
 [email protected]     on EXPLORE    0.0001
 [email protected]     on EXPLORE    0.0004
 [email protected]   on EXPLORE    0.0004
 [email protected]   on EXPLORE    0.0004
 [email protected]     on EXPLOIT    0.0000
 [email protected]     on EXPLOIT    0.0001
 [email protected]   on EXPLOIT    0.0001
 [email protected]   on EXPLOIT    0.0001
 [email protected]     on REGULAR    0.0000
 [email protected]     on REGULAR    0.0001
 [email protected]   on REGULAR    0.0001
 [email protected]   on REGULAR    0.0001
 [email protected]     on SOLO       0.0001
 [email protected]     on SOLO       0.0004
 [email protected]   on SOLO       0.0004
 [email protected]   on SOLO       0.0004
==============================

Results

Methods [email protected] [email protected] [email protected] [email protected]
Collabarative Fiiltering - - -
PersonFreq - - -
PersonVolume - - -
LightFM Meta - - -
LightFM PureCF - - -
LightFM Hybrid 0.000 0.000 0.000 0.000
DGL - - -
GCN - - -

Fund Explanation

Owner
JHJu
Research assistant @ cnc Lab, ASCITI
JHJu
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction

MGNN-SPred This is our Tensorflow implementation for the paper: WenWang,Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. 2020. Bey

Wen Wang 18 Jan 02, 2023
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022