This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

Overview

GHCF

This is our implementation of the paper:

Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2021. Graph Heterogeneous Multi-Relational Recommendation. In AAAI'21.

Please cite our AAAI'21 paper if you use our codes. Thanks!

@inproceedings{chen2021graph,
  title={Graph Heterogeneous Multi-Relational Recommendation},
  author={Chen, Chong and Ma, Weizhi and Zhang, Min and Wang, Zhaowei and He, Xiuqiang and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping},
  booktitle={Proceedings of AAAI},
  year={2021},
}

Example to run the codes

Train and evaluate our model:

python GHCF.py

Reproducibility

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Suggestions for parameters

Several important parameters need to be tuned for different datasets, which are:

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Specifically, we suggest to tune "wid" among [0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5]. It's also acceptable to simply make the three weights the same, e.g., self.weight = [0.1, 0.1, 0.1] or self.weight = [0.01, 0.01, 0.01]. Generally, this parameter is related to the sparsity of dataset. If the dataset is more sparse, then a small value of negative_weight may lead to a better performance.

The coefficient parameter determines the importance of different tasks in multi-task learning. In our datasets, there are three loss coefficients λ 1 , λ 2 , and λ 3 . As λ 1 + λ 2 + λ 3 = 1, when λ 1 and λ 2 are given, the value of λ 3 is determined. We suggest to tune the three coefficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1].

Owner
Chong Chen
Tsinghua University
Chong Chen
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction

MGNN-SPred This is our Tensorflow implementation for the paper: WenWang,Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan Zha. 2020. Bey

Wen Wang 18 Jan 02, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022