🌌 Economics Observatory Visualisation Repository

Overview

Economics Observatory Visualisation Repository

GitHub license Open in Colab GitHub last commit

Website | Visualisations | Data |

Here you will find all the data visualisations and infographics attached to our articles published on the Observatory website. Each visualisation is published under an open source MIT licence, and you are free to reuse/reproduce/redistribute, with attribution.

🌌 Visualisations

We try to follow industry best-practices in data visualisation and try to establish our very own visualisation guidelines for all chart types. You can read about these, as well as the tools we use in 📐 visualisation guidelines .

Date Article Repository Code
2021-06-09 What are the big economic challenges facing the new Welsh Government? folder Open in Colab
2021-05-26 Update: Are small businesses ready to compete as consumers move online? folder Open in Colab
2021-05-25 How are Covid-19 and Brexit affecting ports in Wales? folder Open in Colab
2021-05-19 What is the likely impact of advertising restrictions on obesity? folder
2021-05-17 Why should we care about obesity? folder Open in Colab
2021-05-12 What is the future of commuting to work? folder Open in Colab
2021-05-05 Update: Which firms and industries have been most affected by Covid-19? folder Open in Colab
2021-04-19 How should governments source public services during a crisis? folder Open in Colab
2021-04-14 A year in the UK labour market: what’s happened over the coronavirus pandemic? folder Open in Colab
2021-04-09 How are economic models adapting to rising inequality and the pandemic? folder Open in Colab

Nomenclature

In the world of data visualisation (even in the expert academic and professional literature) the expressions of figure, chart, plot, panel, graph, diagram, visualisation (and possibly others) are conflated and used (incorrectly?) interchangeably, sometimes with the same expression referring to completely different graphical objects under various contexts. We believe that this might cause confusion for the reader and therefore, at the Observatory, we strive to maintain the following nomenclature to refer to our graphical representations of data:

  • At the Observatory, we publish articles.
  • Each article may contain several figures.
  • Each figure may contain several charts. Sometimes we call these charts panels. For example, imagine a horizontal figure that contains two line charts, side-by-side. We might call these components Figure 1 chart a and refer to it as Figure 1 panel a, or just simply Figure 1a.
  • Each chart may be composed of multiple visualisations. For example, a line chart might also have points highlighting and delimiting its segments. In this case, we would have a line plot and a scatter plot visualisation layered on top of each other, composing the chart. To add to your confusion, we sometimes may call these components simply line chart or scatter chart instead of plot, but in this case we actually refer to the visualisations themselves - as various forms of graphical data representation. We chose to stick with the visualisation name, since not all charts are plots in the classical sense: typically plot is an expression reserved in colloquial speech to refer to a line plot, scatter plot, polar plot or even a box plot, and we typically use chart for maybe a pie chart, bar chart, column chart or even candlestick chart. However, there are also more complex visualisation forms, such as a Sankey diagram, a network graph, a histogram or even beeswarm. Therefore, in order to unequivocally refer to all of these graphical data representation tpyes, we use visualisation.

To summarise:

  • Visualisations are chart components.
    • plot, graph, diagram (and depending on context chart also) simply translate to visualisation
  • Figures are made up of one or more charts (or = panels).
  • Articles may contain one of more figures.
  • The Observatory has a collection of articles.

Structure

Under articles each visualisation has their own folder, and within that folder you will find separate subfolder for the data (in csv format) , the visualisation (in json), and in some cases accompanying HTML, CSS and JavaScript. The naming convention for articles is yyyy-mm-dd- . We try to maintain that matches the URL permalink of the article from the website. We are currently transitioning this scheme to an updated one, where each folder contains a config.json file, listing all of the respective article's metadata. The cannot contain / characters.

The articles may contain figures - each composed of one or more charts. Each chart has their own (usually Vega-lite or Vega, but sometimes a D3plus or eCharts) json specification. For composite figures containing multiple charts, we may produce (depending on the tool used) a separate file for each chart (e.g. fig1 or fig2a and fig2b), but sometimes this is handled within the tool and only one file, with the composite figure (fig2) is produced. We normalize the data and compile the visualisations using the parser.ipynb Jupyter notebook.

  • The automatically generated README.md file contains a sneak peek of all the charts included in the article, in the form of static .png images and their names.
  • The raw folder contains the original data, as we have received it from the author (depending on the circumstances, this might not always be public)
  • The data folder contains the normalised data and it is typically the output of the parser.ipynb. Usually (unless data is shared between charts) there is a separate data file generated for each chart.
  • The visualisation folder contains multiple folders corresponding to the names of charting tools used (e.g. vega-lite or d3plus). Some charts may be replicated over multiple tools.
  • Each tool folder contains several theme folders (but typically two, light and dark)
  • Each theme folder contains several aspect folders (but typically two, desktop and mobile)
  • For some older charts, these subfolders under visualisation might be missing. In this case, the vega-lite tool is assumed to be used as the default, with the light theme and the desktop aspect.
  • Each full path under visualisation (e.g. visualisation/vega-lite/dark/desktop) contains:
    • A .json (or .js for the case of D3plus and some other tools) file for each chart (typically one for each figure in the article, but composite figures may be split over multiple charts). This is is what is typically called the chart specification or the chart config.
    • An automatically generated .HTML file for direct embedding. This uses additional JavaScript code to offer a full-fledged HTML page with the data visualisation working out of the box. This is useful in some cases, when problems with directly embedding the chart specification may arise.
    • Whenever data compatibility issues are likely to arise, or the data cannot be formatted using simple in-memory data manipulation techniques (e.g. Vega data transforms) only, we also generate a file ending in _local.json, where all data is stored as a static Javascript Object inside the chart specification json file (this is the safest but also the slowest).
    • The format of the should follow the fig1a_chart-name-with-space naming convention (with _local added at the end, as necessary). The cannot contain / characters.
  • config.json holds the article metadata (this has just been introduced recently, so it may not exist for all articles yet). It has the following keys:
    • uid: the article's unique identifier
    • name: the article's name - same as the mentioned above
    • version: version of the article (1 by default). For update type posts, this is typically larger than 1.
    • previous, next: the article uids that this article follows/precedes
    • title: human readable article title as presented on the Website / Trello (the two should match)
    • url: the published article's URL on the website
    • trello: link to the Trello card of the article
    • github: link to article's folder in this repository under /articles
    • charts: JSON list [] of s included in the article. Can contain just s - then the parent article's path is assumed - or a full path / , pointing to another article's chart.

Issues of the ECO magazine behave like articles and can be found under the magazine folder (e.g. magazine/issue-1).

Embedding

  1. You may use any of the chart specifications listed above - the "naked" or the _local versions of the s for direct embedding on compatible websites (e.g. Wordpress or Flourish).
  2. You may use the HTML files generated to overcome compatibility challenges of more stubborn hosting environments.
  3. Furthermore, we maintain a global viewer.html that can take a data source parameters as its URL hash. E.g. visiting https://economicsobservatory.github.io/ECOvisualisations/viewer.html#articles/2021-04-14-a-year-in-the-uk-labour-market-whats-happened-over-the-coronavirus-pandemic/visualisation/fig5_absent_from_work will open the viewer for Figure 5 of this article (currently, this works for charts under the vega-lite specification, but we are continuously updating it to include all of our charts, regardless of the tool used to generate it).

Option 3, using the viewer.html is the recommended way for embedding our data visualisations on other sites. This is is because if we change our repository structure and/or charting API in the future, we can ensure that all backwards compatibility with existing embedded charts is maintained, but the updates (such as a new theme) are reflected on all of our charts instantly.

You may think of this as a form of 🍨 ChaaS - chart as a service.

📊 Data

All of our chart data are published under their respective article subfolders, but on top of that we also operate the ECOdataHUB, where you will find a trove of data used in our articles and analyses, as well as interactive visualisation exploration interfaces. Whenever possible, we try to follow a TIDY format. You can read about our data zen in 📐 data guidelines.

💻 Build

To learn about the technologies used or build a similar charts like this you can follow the instructions on the guidelines page. If you discovered any bugs or have any specific suggestions or feature requests please use the Issues page.

📧 Contact

The Economics Observatory is run out of the University of Bristol and you can read more about us here. For any technical or visualization-related questions you may contact Dénes. For economics-related queries and anything else about the site content, or further collaborations, you may contact Charlie.

📰 Reference

If you would like to use the site as an information source or any of the visualizations or the data presented, you are free to do so under an MIT licence (you're free to modify anything, as long you as you mention us). Furthermore, the content of all of our articles presented on the Economics Observatory website is shareable under a Creative Commons ShareAlike 4.0 license.

If you would like to refer to it in publications or other scientific works of any kind, please use the following style:

  • Title of article or chart, Economics Observatory, 2021, link to article or chart, published on: publication date, accessed on: access date
Owner
Economics Observatory
Questions and answers about coronavirus and the UK economy. Answered by experts. Told through data.
Economics Observatory
Service for working with open data of the State Duma of the Russian Federation

Сервис для работы с открытыми данными Госдумы РФ Исходные данные из API Госдумы РФ извлекаются с помощью Apache Nifi и приземляются в хранилище Clickh

Aleksandr Sergeenko 2 Feb 14, 2022
Hspice-Wave-Generator is a tool used to quickly generate stimuli souces of hspice format

Hspice-Wave-Generator is a tool used to quickly generate stimuli souces of hspice format. All the stimuli sources are based on `pwl` function of HSPICE and the specific complex operations of writing

3 Aug 02, 2022
Mmr image postbot - Бот для создания изображений с новыми релизами в сообщество ВК MMR Aggregator

Mmr image postbot - Бот для создания изображений с новыми релизами в сообщество ВК MMR Aggregator

Max 3 Jan 07, 2022
Provides guideline on how to configure pre-commit hooks in your own python project

Pre-commit Configuration Guide The main aim of this repository is to act as a guide on how to configure the pre-commit hooks in your existing python p

Faraz Ahmed Khan 2 Mar 31, 2022
Exactly what it sounds like, which is something rad

EyeWitnessTheFitness External recon got ya down? That scan prevention system preventing you from enumerating web pages? Well look no further, I have t

Ellis Springe 18 Dec 31, 2022
Simple programming language built on Python.

Serial Another programming language. Built on Python. Building and running program In order to run the program on serial, unfortunately you still need

Aleksey Demchenkov 1 Dec 09, 2021
Multi View Stereo on Internet Images

Evaluating MVS in a CPC Scenario This repository contains the set of artficats used for the ENGN8601/8602 research project. The thesis emphasizes on t

Namas Bhandari 1 Nov 10, 2021
Alternative StdLib for Nim for Python targets

Alternative StdLib for Nim for Python targets, hijacks Python StdLib for Nim

Juan Carlos 100 Jan 01, 2023
Minimal, super readable string pattern matching for python.

simplematch Minimal, super readable string pattern matching for python. import simplematch simplematch.match("He* {planet}!", "Hello World!") {"p

Thomas Feldmann 147 Dec 01, 2022
Easy way to build a SaaS application using Python and Dash

EasySaaS This project will be attempt to make a great starting point for your next big business as easy and efficent as possible. This project will cr

xianhu 3 Nov 17, 2022
A companion web application to connect stash to deovr

stash-vr-companion This is a companion web application to connect stash to deovr. Stash is a self hosted web application to manage your porn collectio

19 Sep 29, 2022
Store Simulation

Almacenes Para clonar el Repositorio: Vaya a la terminal de Linux o Mac, o a la cmd en Windows y ejecute:

Johan Posada 1 Nov 12, 2021
Eros is an expiremental programming language built using simple Python code.

Eros is an expiremental programming language built using simple Python code. Featuring an easy syntax and unique features like type slicing, the language remains an expirement that grows in down time

zxro 2 Nov 21, 2021
Ningyu Jia(nj2459)/Mengyin Ma(mm5937) Call Analysis group project(Group 36)

Group and Section Group 36 Section 001 name and UNI Name UNI Ningyu Jia nj2459 Mengyin Ma mm5937 code explanation Parking.py (1) Calculate the rate of

1 Dec 04, 2021
Meaningful and minimalist release notes for developers

Managing manual release notes is hard. Therefore, everyone tends to generate release notes from commit messages. But, you won't get a meaningful release note at the end.

codezri 31 Dec 30, 2022
VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM

VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM

IPSL 6 Oct 18, 2022
A fluid medium for storing, relating, and surfacing thoughts.

Conceptarium A fluid medium for storing, relating, and surfacing thoughts. Read more... Instructions The conceptarium takes up about 1GB RAM when runn

115 Dec 19, 2022
Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva.

Tabla_Periodica Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva. Descripcion primer entregable: Tabla periodica

1 Dec 04, 2021
Build a grocery store management application.

python_projects_grocery_webapp In this python project, we will build a grocery store management application. It will be 3 tier application, Front end:

codebasics 54 Dec 29, 2022
Unofficial package for fetching users information based on National ID Number (Tanzania)

Nida Unofficial package for fetching users information based on National ID Number made by kalebu Installation You can install it directly or using pi

Jordan Kalebu 57 Dec 28, 2022