Official TensorFlow code for the forthcoming paper

Overview

arXiv PWC PWC License

~ Efficient-CapsNet ~

Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

This repository has been made for two primarly reasons:

  • open source the code (most of) developed during our "first-stage" research on capsules, summarized by the forthcoming article "Efficient-CapsNet: Capsule Network with Self-Attention Routing". The repository let you play with Efficient-CapsNet and let you set the base for your own experiments.
  • be an hub and a headlight in the cyberspace to spread to the machine learning comunity the intrinsic potential and value of capsule. However, albeit remarkable results achieved by capsule networks, we're fully aware that they're only limited to toy datasets. Nevertheless, there's a lot to make us think that with the right effort and collaboration of the scientific community, capsule based networks could really make a difference in the long run. For now, feel free to dive in our work :))

1.0 Getting Started

1.1 Installation

Python3 and Tensorflow 2.x are required and should be installed on the host machine following the official guide. Good luck with it!

  1. Clone this repository
    git clone https://github.com/EscVM/Efficient-CapsNet.git
  2. Install the required packages
    pip3 install -r requirements.txt

Peek inside the requirements file if you have everything already installed. Most of the dependencies are common libraries.

2.0 Efficient-CapsNet Notebooks

The repository provides two starting notebooks to make you confortable with our architecture. They all have the information and explanations to let you dive further in new research and experiments. The first one let you test Efficient-CapsNet over three different datasets. The repository is provided with some of the weights derived by our own experiments. On the other hand, the second one let you train the network from scratch. It's a very lightweight network so you don't need "Deep Mind" TPUs arsenal to train it. However, even if a GP-GPU is not compulsory, it's strongly suggested (No GPU, no deep learning, no party).

3.0 Original CapsNet Notebooks

It goes without saying that our work has been inspiered by Geoffrey Hinton and his article "Dynamic Routing Between Capsules". It's really an honor to build on his idea. Nevertheless, when we did our first steps in the capsule world, we were pretty disappointed in finding that all repositories/implementations were ultimately wrong in some aspects. So, we implemented everything from scratch, carefully following the original Sara's repository. However, our implementation, besides beeing written for the new TensorFlow 2 version, is much more easier and practical to use. Sara's one is really overcomplicated and too mazy that you can lost pretty easily.

As for the previous section we provide two notebooks, one for testing (weights have been derived from Sara's repository) and one for training.

Nevertheless, there's a really negative note (at least for us:)); as all other repositories that you can find on the web, also our one is not capable to achieve the scores reported in their paper. We really did our best, but there is no way to make the network achieve a score greater than 99.64% on MNIST. Exactly for this reason, weights provided in this repository are derived from their repository. Anyway, it's Geoffrey so we can excuse him.

4.0 Capsules Dimensions Perturbation Notebook

The network is trained with a reconstruction regularizer that is simply a fully connected network trained in conjuction with the main one. So, we can use it to visualize the inner capsules reppresentations. In particular, we should expect that a dimension of a digit capsule should learn to span the space of variations in the way digits of that class are instantiated. We can see what the individual dimensions represent by making use of the decoder network and injecting some noise to one of the dimensions of the main digit capsule layer that is predicting the class of the input.

So, we coded a practical notebook in which you can dynamically tweak whichever dimension you want of the capsule that is making the prediction (longest one).

Finally, if you don't have the necessary resources (GP-GPU holy grail) you can still try this interesting notebook out on Colab.

Citation

Use this bibtex if you enjoyed this repository and you want to cite it:

@article{mazzia2021efficient,
  title={Efficient-CapsNet: Capsule Network withSelf-Attention Routing},
  author={Mazzia, Vittorio and Salvetti, Francesco and Chiaberge, Marcello},
  year={2021},
  journal={arXiv preprint arXiv:2101.12491},
}
Owner
Vittorio Mazzia
Ph.D. Student in Machine Learning and Artificial Intelligence
Vittorio Mazzia
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022