Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

Related tags

Deep LearningFAST-RIR
Overview

FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating roomimpulse responses (RIRs) for a given rectangular acoustic environment. Our model is inspired by StackGAN architecture. The audio examples and spectrograms of the generated RIRs are available here.

Requirements

Python3.6
Pytorch
python-dateutil
easydict
pandas
torchfile
gdown
pickle

Embedding

Each normalized embedding is created as follows: If you are using our trained model, you may need to use extra parameter Correction(CRR).

Listener Position = LP
Source Position = SP
Room Dimension = RD
Reverberation Time = T60
Correction = CRR

CRR = 0.1 if 0.5
   
    <0.6
CRR = 0.2 if T60>0.6
CRR = 0 otherwise

Embedding = ([LP_X,LP_Y,LP_Z,SP_X,SP_y,SP_Z,RD_X,RD_Y,RD_Z,(T60+CRR)] /5) + 1

   

Generete RIRs using trained model

Download the trained model using this command

source download_generate.sh

Create normalized embeddings list in pickle format. You can run following command to generate an example embedding list

 python3 example1.py

Run the following command inside code_new to generate RIRs corresponding to the normalized embeddings list. You can find generated RIRs inside code_new/Generated_RIRs

python3 main.py --cfg cfg/RIR_eval.yml --gpu 0

Range

Our trained NN-DAS is capable of generating RIRs with the following range accurately.

Room Dimension X --> 8m to 11m
Room Dimesnion Y --> 6m to 8m
Room Dimension Z --> 2.5m to 3.5m
Listener Position --> Any position within the room
Speaker Position --> Any position within the room
Reverberation time --> 0.2s to 0.7s

Training the Model

Run the following command to download the training dataset we created using a Diffuse Acoustic Simulator. You also can train the model using your dataset.

source download_data.sh

Run the following command to train the model. You can pass what GPUs to be used for training as an input argument. In this example, I am using 2 GPUs.

python3 main.py --cfg cfg/RIR_s1.yml --gpu 0,1

Related Works

  1. IR-GAN: Room Impulse Response Generator for Far-field Speech Recognition (INTERSPEECH2021)
  2. TS-RIR: Translated synthetic room impulse responses for speech augmentation (IEEE ASRU 2021)

Citations

If you use our FAST-RIR for your research, please consider citing

@article{ratnarajah2021fast,
  title={FAST-RIR: Fast neural diffuse room impulse response generator},
  author={Ratnarajah, Anton and Zhang, Shi-Xiong and Yu, Meng and Tang, Zhenyu and Manocha, Dinesh and Yu, Dong},
  journal={arXiv preprint arXiv:2110.04057},
  year={2021}
}

Our work is inspired by

@inproceedings{han2017stackgan,
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
Year = {2017},
booktitle = {{ICCV}},
}

If you use our training dataset generated using Diffuse Acoustic Simulator in your research, please consider citing

@inproceedings{9052932,
  author={Z. {Tang} and L. {Chen} and B. {Wu} and D. {Yu} and D. {Manocha}},  
  booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},  
  title={Improving Reverberant Speech Training Using Diffuse Acoustic Simulation},   
  year={2020},  
  volume={},  
  number={},  
  pages={6969-6973},
}
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022