Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Related tags

Deep LearningARAPReg
Overview

ARAPReg

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Installation

The code is developed using Python 3.6 and cuda 10.2 on Ubuntu 18.04.

Note that Pytorch and Pytorch Geometric versions might change with your cuda version.

Data Preparation

We provide data for 3 datasets: DFAUST, SMAL and Bone dataset.

DFAUST

We use 4264 test shapes and 32933 training shapes from DFaust dataset. You can download the dataset here. Please place dfaust.zip in data/DFaust/raw/.

SMAL

We use 400 shapes from the family 0 in SMAL dataset. We generate shapes by the SMAL demo where the mean and the variance of the pose vectors are set to 0 and 0.2. We split them to 300 training and 100 testing samples.

You can download the generated dataset here. After downloading, please move the downloaded smal.zip to ./data/SMAL/raw.

Bone

We created a conventional bone dataset with 4 categories: tibia, pelvis, scapula and femur. Each category has about 50 shapes. We split them to 40 training and 10 testing samples. You can download the dataset here. After downloading, please move bone.zip to ./data then extract it.

Testing

Pretrained checkpoints

You can find pre-trained models and training logs in the following paths:

DFAUST: checkpoints.zip. Uncompress it under repository root will place two checkpoints in DFaust/out/arap/checkpoints/ and DFaust/out/arap/test_checkpoints/.

SMAL: smal_ckpt.zip. Move it to ./work_dir/SMAL/out, then extract it.

Bone: bone_ckpt.zip. Move it to ./work_dir, then extract it. It contains checkpoints for 4 bone categories.

Run testing

After putting pre-trained checkpoints to their corresponding paths, you can run the following scripts to optimize latent vectors for shape reconstruction. Note that our model has the auto-decoder architecture, so there's still a latent vector training stage for testing shapes.

Note that both SMAL and Bone checkpoints were trained on a single GPU. Please keep args.distributed False in main.py. In your own training, you can use multiple GPUs.

DFAUST:

bash test_dfaust.sh

SMAL:

bash test_smal.sh

Bone:

bash test_smal.sh

Note that for bone dataset, we train and test 4 categories seperately. Currently there's tibia in the training and testing script. You can replace it with femur, pelvis or scapula to get results for other 3 categories.

Model training

To retrain our model, run the following scripts after downloading and extracting datasets.

DFAUST: Note that on DFaust, it is preferred to have multiple GPUs for better efficiency. The script on DFaust tracks the reconstruction error to avoid over-fitting.

bash train_and_test_dfaust.sh

SMAL:

bash train_smal.sh

Bone:

bash train_bone.sh

Train on a new dataset

Data preprocessing and loading scripts are in ./datasets. To train on a new dataset, please write data loading file similar to ./datasets/dfaust.py. Then add the dataset to ./datasets/meshdata.py and main.py. Finally you can write a similar training script like train_and_test_dfaust.sh.

Owner
Bo Sun
CS Ph.D. student at UT Austin. Email: [email protected]
Bo Sun
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022