Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Overview

Training Script for Reuse-VOS

This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Hard case (Ours, FRTM)

sample ours hard (Ours)

sample FRTM hard (FRTM)

Easy case (Ours, FRTM)

sample ours easy(Ours)

sample FRTM easy(FRTM)

Requirement

python package

  • torch
  • python-opencv
  • skimage
  • easydict

GPU support

  • GPU Memory >= 11GB (RN18)
  • CUDA >= 10.0
  • pytorch >= 1.4.0

Datasets

DAVIS

To test the DAVIS validation split, download and unzip the 2017 480p trainval images and annotations here.

/path/DAVIS
|-- Annotations/
|-- ImageSets/
|-- JPEGImages/

YouTubeVOS

To test our validation split and the YouTubeVOS challenge 'valid' split, download YouTubeVOS 2018 and place it in this directory structure:

/path/ytvos2018
|-- train/
|-- train_all_frames/
|-- valid/
`-- valid_all_frames/

Release

DAVIS

model Backbone Training set J & F 17 J & F 16 link
G-FRTM (t=1) Resnet18 Youtube-VOS + DAVIS 71.7 80.9 Google Drive
G-FRTM (t=0.7) Resnet18 Youtube-VOS + DAVIS 69.9 80.5 same pth
G-FRTM (t=1) Resnet101 Youtube-VOS + DAVIS 76.4 84.3 Google Drive
G-FRTM (t=0.7) Resnet101 Youtube-VOS + DAVIS 74.3 82.3 same pth

Youtube-VOS

model Backbone Training set G J-S J-Us F-S F-Us link
G-FRTM (t=1) Resnet18 Youtube-VOS 63.8 68.3 55.2 70.6 61.0 Google Drive
G-FRTM (t=0.8) Resnet18 Youtube-VOS 63.4 67.6 55.8 69.3 60.9 same pth
G-FRTM (t=0.7) Resnet18 Youtube-VOS 62.7 67.1 55.2 68.2 60.1 same pth

We initialize orignal-FRTM layers from official FRTM repository weight for Youtube-VOS benchmark. S = Seen, Us = Unseen

Target model cache

Here is the cache file we used for ResNet18 file

Run

Train

Open train.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python train.py --name <session-name> --ftext resnet18 --dset all --dev cuda:0

--name is the name of save_dir name of current train --ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2017, ytvos2018 or all ("all" really means "both"). --dev is the name of the device to train on. --m1 is the margin1 for training reuse gate, and we use 1.0 for DAVIS benchmark and 0.5 for Youtube-VOS benchmark. --m2 is the margin2 for training reuse gate, and we use 0.

Replace "session-name" with whatever you like. Subdirectories with this name will be created under your checkpoint and tensorboard paths.

Eval

Open eval.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python evaluate.py --ftext resnet18 --dset dv2017val --dev cuda:0

--ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2016val, dv2017val, yt2018jjval, yt2018val or yt2018valAll --dev is the name of the device to eval on. --TH Threshold for tau default= 0.7

The inference results will be saved at ${ROOT}/${result} . It is better to check multiple pth file for good accuracy.

Acknowledgement

This codebase borrows the code and structure from official FRTM repository. We are grateful to Facebook Inc. with valuable discussions.

Reference

The codebase is built based on following works

@misc{park2020learning,
      title={Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation}, 
      author={Hyojin Park and Jayeon Yoo and Seohyeong Jeong and Ganesh Venkatesh and Nojun Kwak},
      year={2020},
      eprint={2012.11655},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
HYOJINPARK
HYOJINPARK
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022