Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Overview

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei Liu.

Project | Paper | Demo

We propose Pose-Controllable Audio-Visual System (PC-AVS), which achieves free pose control when driving arbitrary talking faces with audios. Instead of learning pose motions from audios, we leverage another pose source video to compensate only for head motions. The key is to devise an implicit low-dimension pose code that is free of mouth shape or identity information. In this way, audio-visual representations are modularized into spaces of three key factors: speech content, head pose, and identity information.

Requirements

  • Python 3.6 and Pytorch 1.3.0 are used. Basic requirements are listed in the 'requirements.txt'.
pip install -r requirements.txt

Quick Start: Generate Demo Results

  • Download the pre-trained checkpoints.

  • Create the default folder ./checkpoints and unzip the demo.zip at ./checkpoints/demo. There should be a 5 pths in it.

  • Unzip all *.zip files within the misc folder.

  • Run the demo scripts:

bash experiments/demo_vox.sh
  • The --gen_video argument is by default on, ffmpeg >= 4.2.0 is required to use this flag in linux systems. All frames along with an avconcat.mp4 video file will be saved in the ./id_517600055_pose_517600078_audio_681600002/results folder in the following form:

From left to right are the reference input, the generated results, the pose source video and the synced original video with the driving audio.

Prepare Testing Meta Data

  • Automatic VoxCeleb2 Data Formulation

The inference code experiments/demo.sh refers to ./misc/demo.csv for testing data paths. In linux systems, any applicable csv file can be created automatically by running:

python scripts/prepare_testing_files.py

Then modify the meta_path_vox in experiments/demo_vox.sh to './misc/demo2.csv' and run

bash experiments/demo_vox.sh

An additional result should be seen saved.

  • Metadata Details

Detailedly, in scripts/prepare_testing_files.py there are certain flags which enjoy great flexibility when formulating the metadata:

  1. --src_pose_path denotes the driving pose source path. It can be an mp4 file or a folder containing frames in the form of %06d.jpg starting from 0.

  2. --src_audio_path denotes the audio source's path. It can be an mp3 audio file or an mp4 video file. If a video is given, the frames will be automatically saved in ./misc/Mouth_Source/video_name, and disables the --src_mouth_frame_path flag.

  3. --src_mouth_frame_path. When --src_audio_path is not a video path, this flags could provide the folder containing the video frames synced with the source audio.

  4. --src_input_path is the path to the input reference image. When the path is a video file, we will convert it to frames.

  5. --csv_path the path to the to-be-saved metadata.

You can manually modify the metadata csv file or add lines to it according to the rules defined in the scripts/prepare_testing_files.py file or the dataloader data/voxtest_dataset.py.

We provide a number of demo choices in the misc folder, including several ones used in our video. Feel free to rearrange them even across folders. And you are welcome to record audio files by yourself.

  • Self-Prepared Data Processing

Our model handles only VoxCeleb2-like cropped data, thus pre-processing is needed for self-prepared data.

  • Coming soon

Train Your Own Model

  • Coming soon

License and Citation

The usage of this software is under CC-BY-4.0.

@InProceedings{zhou2021pose,
author = {Zhou, Hang and Sun, Yasheng and Wu, Wayne and Loy, Chen Change and Wang, Xiaogang and Liu, Ziwei},
title = {Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}

Acknowledgement

Owner
Hang_Zhou
Ph.D. Candidate @ MMLab-CUHK
Hang_Zhou
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022