Localization Distillation for Object Detection

Overview

Localization Distillation for Object Detection

This repo is based on mmDetection.

This is the code for our paper:

LD is the extension of knowledge distillation on localization task, which utilizes the learned bbox distributions to transfer the localization dark knowledge from teacher to student.

LD stably improves over GFocalV1 about ~0.8 AP and ~1 AR100 without adding any computational cost!

Introduction

Knowledge distillation (KD) has witnessed its powerful ability in learning compact models in deep learning field, but it is still limited in distilling localization information for object detection. Existing KD methods for object detection mainly focus on mimicking deep features between teacher model and student model, which not only is restricted by specific model architectures, but also cannot distill localization ambiguity. In this paper, we first propose localization distillation (LD) for object detection. In particular, our LD can be formulated as standard KD by adopting the general localization representation of bounding box. Our LD is very flexible, and is applicable to distill localization ambiguity for arbitrary architecture of teacher model and student model. Moreover, it is interesting to find that Self-LD, i.e., distilling teacher model itself, can further boost state-of-the-art performance. Second, we suggest a teacher assistant (TA) strategy to fill the possible gap between teacher model and student model, by which the distillation effectiveness can be guaranteed even the selected teacher model is not optimal. On benchmark datasets PASCAL VOC and MS COCO, our LD can consistently improve the performance for student detectors, and also boosts state-of-the-art detectors notably.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Get Started

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py 8

Learning rate setting

lr=(samples_per_gpu * num_gpu) / 16 * 0.01

For 2 GPUs and mini-batch size 6, the relevant portion of the config file would be:

optimizer = dict(type='SGD', lr=0.00375, momentum=0.9, weight_decay=0.0001)
data = dict(
    samples_per_gpu=3,

For 8 GPUs and mini-batch size 16, the relevant portion of the config file would be:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
data = dict(
    samples_per_gpu=2,

Convert model

After training with LD, the weight file .pth will be large. You'd better convert the model to save a new small one. See convert_model.py#L38-L40, you can set them to your .pth file and config file. Then, run

python convert_model.py

Speed Test (FPS)

CUDA_VISIBLE_DEVICES=0 python3 ./tools/benchmark.py configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py work_dirs/ld_gflv1_r101_r50_fpn_coco_1x/epoch_24.pth

COCO Evaluation

./tools/dist_test.sh configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py work_dirs/ld_gflv1_r101_r50_fpn_coco_1x/epoch_24.pth 8 --eval bbox

GFocalV1 with LD

Teacher Student Training schedule Mini-batch size AP (val) AP50 (val) AP75 (val) AP (test-dev) AP50 (test-dev) AP75 (test-dev) AR100 (test-dev)
-- R-18 1x 6 35.8 53.1 38.2 36.0 53.4 38.7 55.3
R-101 R-18 1x 6 36.5 52.9 39.3 36.8 53.5 39.9 56.6
-- R-34 1x 6 38.9 56.6 42.2 39.2 56.9 42.3 58.0
R-101 R-34 1x 6 39.8 56.6 43.1 40.0 57.1 43.5 59.3
-- R-50 1x 6 40.1 58.2 43.1 40.5 58.8 43.9 59.0
R-101 R-50 1x 6 41.1 58.7 44.9 41.2 58.8 44.7 59.8
-- R-101 2x 6 44.6 62.9 48.4 45.0 63.6 48.9 62.3
R-101-DCN R-101 2x 6 45.4 63.1 49.5 45.6 63.7 49.8 63.3

GFocalV1 with Self-LD

Teacher Student Training schedule Mini-batch size AP (val) AP50 (val) AP75 (val)
-- R-18 1x 6 35.8 53.1 38.2
R-18 R-18 1x 6 36.1 52.9 38.5
-- R-50 1x 6 40.1 58.2 43.1
R-50 R-50 1x 6 40.6 58.2 43.8
-- X-101-32x4d-DCN 1x 4 46.9 65.4 51.1
X-101-32x4d-DCN X-101-32x4d-DCN 1x 4 47.5 65.8 51.8

GFocalV2 with LD

Teacher Student Training schedule Mini-batch size AP (test-dev) AP50 (test-dev) AP75 (test-dev) AR100 (test-dev)
-- R-50 2x 16 44.4 62.3 48.5 62.4
R-101 R-50 2x 16 44.8 62.4 49.0 63.1
-- R-101 2x 16 46.0 64.1 50.2 63.5
R-101-DCN R-101 2x 16 46.8 64.5 51.1 64.3
-- R-101-DCN 2x 16 48.2 66.6 52.6 64.4
R2-101-DCN R-101-DCN 2x 16 49.1 67.1 53.7 65.6
-- X-101-32x4d-DCN 2x 16 49.0 67.6 53.4 64.7
R2-101-DCN X-101-32x4d-DCN 2x 16 50.2 68.3 54.9 66.3
-- R2-101-DCN 2x 16 50.5 68.9 55.1 66.2
R2-101-DCN R2-101-DCN 2x 16 51.0 69.1 55.9 66.8

VOC Evaluation

./tools/dist_test.sh configs/ld/ld_gflv1_r101_r18_fpn_voc.py work_dirs/ld_gflv1_r101_r18_fpn_voc/epoch_4.pth 8 --eval mAP

GFocalV1 with LD

Teacher Student Training Epochs Mini-batch size AP AP50 AP75
-- R-18 4 6 51.8 75.8 56.3
R-101 R-18 4 6 53.0 75.9 57.6
-- R-50 4 6 55.8 79.0 60.7
R-101 R-50 4 6 56.1 78.5 61.2
-- R-34 4 6 55.7 78.9 60.6
R-101-DCN R-34 4 6 56.7 78.4 62.1
-- R-101 4 6 57.6 80.4 62.7
R-101-DCN R-101 4 6 58.4 80.2 63.7

This is an example of evaluation results (R-101→R-18).

+-------------+------+-------+--------+-------+
| class       | gts  | dets  | recall | ap    |
+-------------+------+-------+--------+-------+
| aeroplane   | 285  | 4154  | 0.081  | 0.030 |
| bicycle     | 337  | 7124  | 0.125  | 0.108 |
| bird        | 459  | 5326  | 0.096  | 0.018 |
| boat        | 263  | 8307  | 0.065  | 0.034 |
| bottle      | 469  | 10203 | 0.051  | 0.045 |
| bus         | 213  | 4098  | 0.315  | 0.247 |
| car         | 1201 | 16563 | 0.193  | 0.131 |
| cat         | 358  | 4878  | 0.254  | 0.128 |
| chair       | 756  | 32655 | 0.053  | 0.027 |
| cow         | 244  | 4576  | 0.131  | 0.109 |
| diningtable | 206  | 13542 | 0.150  | 0.117 |
| dog         | 489  | 6446  | 0.196  | 0.076 |
| horse       | 348  | 5855  | 0.144  | 0.036 |
| motorbike   | 325  | 6733  | 0.052  | 0.017 |
| person      | 4528 | 51959 | 0.099  | 0.037 |
| pottedplant | 480  | 12979 | 0.031  | 0.009 |
| sheep       | 242  | 4706  | 0.132  | 0.060 |
| sofa        | 239  | 9640  | 0.192  | 0.060 |
| train       | 282  | 4986  | 0.142  | 0.042 |
| tvmonitor   | 308  | 7922  | 0.078  | 0.045 |
+-------------+------+-------+--------+-------+
| mAP         |      |       |        | 0.069 |
+-------------+------+-------+--------+-------+
AP:  0.530091167986393
['AP50: 0.759393', 'AP55: 0.744544', 'AP60: 0.724239', 'AP65: 0.693551', 'AP70: 0.639848', 'AP75: 0.576284', 'AP80: 0.489098', 'AP85: 0.378586', 'AP90: 0.226534', 'AP95: 0.068834']
{'mAP': 0.7593928575515747}

Note:

  • For more experimental details, please refer to GFocalV1, GFocalV2 and mmdetection.
  • According to ATSS, there is no gap between box-based regression and point-based regression. Personal conjectures: 1) If xywh form is able to work when using general distribution (apply uniform subinterval division for xywh), our LD can also work in xywh form. 2) If xywh form with general distribution cannot obtain better result, then the best modification is to firstly switch xywh form to tblr form and then apply general distribution and LD. Consequently, whether xywh form + general distribution works or not, our LD benefits for all the regression-based detector.

Pretrained weights

VOC COCO
GFocalV1 teacher R101 pan.baidu pw: ufc8 GFocalV1 + LD R101_R18_1x pan.baidu pw: hj8d
GFocalV1 teacher R101DCN pan.baidu pw: 5qra GFocalV1 + LD R101_R50_1x pan.baidu pw: bvzz
GFocalV1 + LD R101_R18 pan.baidu pw: 1bd3 GFocalV2 + LD R101_R50_2x pan.baidu pw: 3jtq
GFocalV1 + LD R101DCN_R34 pan.baidu pw: thuw GFocalV2 + LD R101DCN_R101_2x pan.baidu pw: zezq
GFocalV1 + LD R101DCN_R101 pan.baidu pw: mp8t GFocalV2 + LD R2N_R101DCN_2x pan.baidu pw: fsbm
GFocalV2 + LD R2N_X101_2x pan.baidu pw: 9vcc
GFocalV2 + Self-LD R2N_R2N_2x pan.baidu pw: 9azn

For any other teacher model, you can download at GFocalV1, GFocalV2 and mmdetection.

Score voting Cluster-DIoU-NMS

We provide Score voting Cluster-DIoU-NMS which is a speed up version of score voting NMS and combination with DIoU-NMS. For GFocalV1 and GFocalV2, Score voting Cluster-DIoU-NMS will bring 0.1-0.3 AP increase, 0.2-0.5 AP75 increase, <=0.4 AP50 decrease and <=1.5 FPS decrease, while it is much faster than score voting NMS in mmdetection. The relevant portion of the config file would be:

# Score voting Cluster-DIoU-NMS
test_cfg = dict(
nms=dict(type='voting_cluster_diounms', iou_threshold=0.6),

# Original NMS
test_cfg = dict(
nms=dict(type='nms', iou_threshold=0.6),

Citation

If you find LD useful in your research, please consider citing:

@Article{zheng2021LD,
  title={Localization Distillation for Object Detection},
  author= {Zhaohui Zheng, Rongguang Ye, Ping Wang, Jun Wang, Dongwei Ren, Wangmeng Zuo},
  journal={arXiv:2102.12252},
  year={2021}
}
Owner
Master student
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Fang Zhonghao 13 Nov 19, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022