Fast, flexible and fun neural networks.

Overview

Brainstorm

Discontinuation Notice
Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as Tensorflow or Chainer. These and similar large projects are supported much more actively by a larger number of contributors. They provide, or plan to provide many available and planned features of brainstorm, and have several advantages, particularly in speed. In order to avoid fragmentation and waste of effort, we have decided to discontinue the brainstorm project and contribute to other frameworks and related projects such as Sacred instead. Many thanks to everyone who contributed! For us it has been a thoroughly enjoyable and educational experience.

Documentation Status PyPi Version MIT license Python Versions

Brainstorm makes working with neural networks fast, flexible and fun.

Combining lessons from previous projects with new design elements, and written entirely in Python, Brainstorm has been designed to work on multiple platforms with multiple computing backends.

Getting Started

A good point to start is the brief walkthrough of the cifar10_cnn.py example.
More documentation is in progress, and hosted on ReadTheDocs. If you wish, you can also run the data preparation scripts (data directory) and look at some basic examples (examples directory).

Status

Brainstorm is discontinued.

The currently available feature set includes recurrent (simple, LSTM, Clockwork), 2D convolution/pooling, Highway and batch normalization layers. API documentation is fairly complete and we are currently working on tutorials and usage guides.

Brainstorm abstracts computations via handlers with a consistent API. Currently, two handlers are provided: NumpyHandler for computations on the CPU (through Numpy/Cython) and PyCudaHandler for the GPU (through PyCUDA and scikit-cuda).

Installation

Here are some quick instructions for installing the latest master branch on Ubuntu.

# Install pre-requisites
sudo apt-get update
sudo apt-get install python-dev libhdf5-dev git python-pip
# Get brainstorm
git clone https://github.com/IDSIA/brainstorm
# Install
cd brainstorm
[sudo] pip install -r requirements.txt
[sudo] python setup.py install
# Build local documentation (optional)
sudo apt-get install python-sphinx
make docs
# Install visualization dependencies (optional)
sudo apt-get install graphviz libgraphviz-dev pkg-config
[sudo] pip install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

To use your CUDA installation with brainstorm:

$ [sudo] pip install -r pycuda_requirements.txt

Set location for storing datasets:

echo "export BRAINSTORM_DATA_DIR=/home/my_data_dir/" >> ~/.bashrc

Help and Support

If you have any suggestions or questions, please post to the Google group.

If you encounter any errors or problems, please let us know by opening an issue.

License

MIT License. Please see the LICENSE file.

Acknowledgements and Citation

Klaus Greff and Rupesh Srivastava would like to thank Jürgen Schmidhuber for his continuous supervision and encouragement. Funding from EU projects NASCENCE (FP7-ICT-317662) and WAY (FP7-ICT-288551) was instrumental during the development of this project. We also thank Nvidia Corporation for their donation of GPUs.

If you use Brainstorm in your research, please cite us as follows:

Klaus Greff, Rupesh Kumar Srivastava and Jürgen Schmidhuber. 2016. Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5. https://github.com/IDSIA/brainstorm

Bibtex:

@misc{brainstorm2015,
  author = {Klaus Greff and Rupesh Kumar Srivastava and Jürgen Schmidhuber},
  title = {{Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5}},
  year = {2015},
  url = {https://github.com/IDSIA/brainstorm}
}
Owner
IDSIA
Istituto Dalle Molle di studi sull'intelligenza artificiale
IDSIA
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022