Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

Overview

nvdiffrec

Teaser image

Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D Models, Materials, and Lighting From Images.

For differentiable marching tetrahedons, we have adapted code from NVIDIA's Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research.

Licenses

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License.

For business inquiries, please contact [email protected]

Installation

Requires Python 3.6+, VS2019+, Cuda 11.3+ and PyTorch 1.10+

Tested in Anaconda3 with Python 3.9 and PyTorch 1.10

One time setup (Windows)

Install the Cuda toolkit (required to build the PyTorch extensions). We support Cuda 11.3 and above. Pick the appropriate version of PyTorch compatible with the installed Cuda toolkit. Below is an example with Cuda 11.3

conda create -n dmodel python=3.9
activate dmodel
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install ninja imageio PyOpenGL glfw xatlas gdown
pip install git+https://github.com/NVlabs/nvdiffrast/
pip install --global-option="--no-networks" git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
imageio_download_bin freeimage

Every new command prompt

activate dmodel

Examples

Our approach is designed for high-end NVIDIA GPUs with large amounts of memory. To run on mid-range GPU's, reduce the batch size parameter in the .json files.

Simple genus 1 reconstruction example:

python train.py --config configs/bob.json

Visualize training progress (only supported on Windows):

python train.py --config configs/bob.json --display-interval 20

Multi GPU example (Linux only. Experimental: all results in the paper were generated using a single GPU), using PyTorch DDP

torchrun --nproc_per_node=4 train.py --config configs/bob.json

Below, we show the starting point and the final result. References to the right.

Initial guess Our result

The results will be stored in the out folder. The Spot and Bob models were created and released into the public domain by Keenan Crane.

Included examples

  • spot.json - Extracting a 3D model of the spot model. Geometry, materials, and lighting from image observations.
  • spot_fixlight.json - Same as above but assuming known environment lighting.
  • spot_metal.json - Example of joint learning of materials and high frequency environment lighting to showcase split-sum.
  • bob.json - Simple example of a genus 1 model.

Datasets

We additionally include configs (nerf_*.json, nerd_*.json) to reproduce the main results of the paper. We rely on third party datasets, which are courtesy of their respective authors. Please note that individual licenses apply to each dataset. To automatically download and pre-process all datasets, run the download_datasets.py script:

activate dmodel
cd data
python download_datasets.py

Below follows more information and instructions on how to manually install the datasets (in case the automated script fails).

NeRF synthetic dataset Our view interpolation results use the synthetic dataset from the original NeRF paper. To manually install it, download the NeRF synthetic dataset archive and unzip it into the nvdiffrec/data folder. This is required for running any of the nerf_*.json configs.

NeRD dataset We use datasets from the NeRD paper, which features real-world photogrammetry and inaccurate (manually annotated) segmentation masks. Clone the NeRD datasets using git and rescale them to 512 x 512 pixels resolution using the script scale_images.py. This is required for running any of the nerd_*.json configs.

activate dmodel
cd nvdiffrec/data/nerd
git clone https://github.com/vork/ethiopianHead.git
git clone https://github.com/vork/moldGoldCape.git
python scale_images.py

Server usage (through Docker)

  • Build docker image.
cd docker
./make_image.sh nvdiffrec:v1
  • Start an interactive docker container: docker run --gpus device=0 -it --rm -v /raid:/raid -it nvdiffrec:v1 bash

  • Detached docker: docker run --gpus device=1 -d -v /raid:/raid -w=[path to the code] nvdiffrec:v1 python train.py --config configs/bob.json

Owner
NVIDIA Research Projects
NVIDIA Research Projects
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021