⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

Overview

BERT-of-Theseus

Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing".

BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT.

BERT of Theseus

Citation

If you use this code in your research, please cite our paper:

@inproceedings{xu-etal-2020-bert,
    title = "{BERT}-of-Theseus: Compressing {BERT} by Progressive Module Replacing",
    author = "Xu, Canwen  and
      Zhou, Wangchunshu  and
      Ge, Tao  and
      Wei, Furu  and
      Zhou, Ming",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.633",
    pages = "7859--7869"
}

NEW: We have uploaded a script for making predictions on GLUE tasks and preparing for leaderboard submission. Check out here!

How to run BERT-of-Theseus

Requirement

Our code is built on huggingface/transformers. To use our code, you must clone and install huggingface/transformers.

Compress a BERT

  1. You should fine-tune a predecessor model following the instruction from huggingface and then save it to a directory if you haven't done so.
  2. Run compression following the examples below:
# For compression with a replacement scheduler
export GLUE_DIR=/path/to/glue_data
export TASK_NAME=MRPC

python ./run_glue.py \
  --model_name_or_path /path/to/saved_predecessor \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir "$GLUE_DIR/$TASK_NAME" \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 2e-5 \
  --save_steps 50 \
  --num_train_epochs 15 \
  --output_dir /path/to/save_successor/ \
  --evaluate_during_training \
  --replacing_rate 0.3 \
  --scheduler_type linear \
  --scheduler_linear_k 0.0006
# For compression with a constant replacing rate
export GLUE_DIR=/path/to/glue_data
export TASK_NAME=MRPC

python ./run_glue.py \
  --model_name_or_path /path/to/saved_predecessor \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir "$GLUE_DIR/$TASK_NAME" \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 2e-5 \
  --save_steps 50 \
  --num_train_epochs 15 \
  --output_dir /path/to/save_successor/ \
  --evaluate_during_training \
  --replacing_rate 0.5 \
  --steps_for_replacing 2500 

For the detailed description of arguments, please refer to the source code.

Load Pretrained Model on MNLI

We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set).

Method MNLI MRPC QNLI QQP RTE SST-2 STS-B
BERT-base 83.5 89.5 91.2 89.8 71.1 91.5 88.9
DistillBERT 79.0 87.5 85.3 84.9 59.9 90.7 81.2
BERT-of-Theseus 82.1 87.5 88.8 88.8 70.1 91.8 87.8

You can easily load our general-purpose model using huggingface/transformers.

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("canwenxu/BERT-of-Theseus-MNLI")

model = AutoModel.from_pretrained("canwenxu/BERT-of-Theseus-MNLI")

Bug Report and Contribution

If you'd like to contribute and add more tasks (only GLUE is available at this moment), please submit a pull request and contact me. Also, if you find any problem or bug, please report with an issue. Thanks!

Third-Party Implementations

We list some third-party implementations from the community here. Please kindly add your implementation to this list:

Owner
Kevin Canwen Xu
PhD student @ UCSD; Formerly @huggingface, @microsoft Research Asia.
Kevin Canwen Xu
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022