⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

Overview

BERT-of-Theseus

Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing".

BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT.

BERT of Theseus

Citation

If you use this code in your research, please cite our paper:

@inproceedings{xu-etal-2020-bert,
    title = "{BERT}-of-Theseus: Compressing {BERT} by Progressive Module Replacing",
    author = "Xu, Canwen  and
      Zhou, Wangchunshu  and
      Ge, Tao  and
      Wei, Furu  and
      Zhou, Ming",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.633",
    pages = "7859--7869"
}

NEW: We have uploaded a script for making predictions on GLUE tasks and preparing for leaderboard submission. Check out here!

How to run BERT-of-Theseus

Requirement

Our code is built on huggingface/transformers. To use our code, you must clone and install huggingface/transformers.

Compress a BERT

  1. You should fine-tune a predecessor model following the instruction from huggingface and then save it to a directory if you haven't done so.
  2. Run compression following the examples below:
# For compression with a replacement scheduler
export GLUE_DIR=/path/to/glue_data
export TASK_NAME=MRPC

python ./run_glue.py \
  --model_name_or_path /path/to/saved_predecessor \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir "$GLUE_DIR/$TASK_NAME" \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 2e-5 \
  --save_steps 50 \
  --num_train_epochs 15 \
  --output_dir /path/to/save_successor/ \
  --evaluate_during_training \
  --replacing_rate 0.3 \
  --scheduler_type linear \
  --scheduler_linear_k 0.0006
# For compression with a constant replacing rate
export GLUE_DIR=/path/to/glue_data
export TASK_NAME=MRPC

python ./run_glue.py \
  --model_name_or_path /path/to/saved_predecessor \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir "$GLUE_DIR/$TASK_NAME" \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --per_gpu_eval_batch_size 32 \
  --learning_rate 2e-5 \
  --save_steps 50 \
  --num_train_epochs 15 \
  --output_dir /path/to/save_successor/ \
  --evaluate_during_training \
  --replacing_rate 0.5 \
  --steps_for_replacing 2500 

For the detailed description of arguments, please refer to the source code.

Load Pretrained Model on MNLI

We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set).

Method MNLI MRPC QNLI QQP RTE SST-2 STS-B
BERT-base 83.5 89.5 91.2 89.8 71.1 91.5 88.9
DistillBERT 79.0 87.5 85.3 84.9 59.9 90.7 81.2
BERT-of-Theseus 82.1 87.5 88.8 88.8 70.1 91.8 87.8

You can easily load our general-purpose model using huggingface/transformers.

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("canwenxu/BERT-of-Theseus-MNLI")

model = AutoModel.from_pretrained("canwenxu/BERT-of-Theseus-MNLI")

Bug Report and Contribution

If you'd like to contribute and add more tasks (only GLUE is available at this moment), please submit a pull request and contact me. Also, if you find any problem or bug, please report with an issue. Thanks!

Third-Party Implementations

We list some third-party implementations from the community here. Please kindly add your implementation to this list:

Owner
Kevin Canwen Xu
PhD student @ UCSD; Formerly @huggingface, @microsoft Research Asia.
Kevin Canwen Xu
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

This repository contains helper functions which can help you generate additional data points depending on your NLP task.

NLP Albumentations For Data Augmentation This repository contains helper functions which can help you generate additional data points depending on you

Aflah 6 May 22, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021