Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Overview

Stat4ML

Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

This is the first course from our trio courses:

  1. Statistics Foundation for ML

https://github.com/Bellman281/Stat4ML/

  1. Introduction to Statistical Learning https://github.com/Bellman281/Intro_Statistical_Learning

  2. Advanced Statistical Learning for DL ( to be anounced)

Registration Form for cohort 2 of STAT4ML:

https://forms.gle/ZqLJLmv1K5nGVx3m7

Notes about the course:

Instructor : Omid Safarzadeh,

LinkedIn: https://www.linkedin.com/in/omidsafarzadeh/

IG : @deepdatascientists

Course Text Book: Statistical Inference 2nd Edition by George Casella (Author), Roger L. Berger (Author) :

https://www.amazon.com/Statistical-Inference-George-Casella-dp-0534243126/dp/0534243126/ref=mt_other?_encoding=UTF8&me=&qid=

Pre Requisitives

Recall from Calculus:

    Derivative
          Chain rule
    Integral
          Techniques of Integration
          Substitution
    Integration by parts

Matrix Algebra Review:

    Matrix operations
    Matrix Multiplication
       Properties of determinants
       Inverse Matrix
       Matrix Transpose
       Properties of transpose
    Partioned Matrices
    Eigenvalues and Eigenvectors
    Matrix decomposition
       LU decomposition
       Cholesky decomposition
       QR decomposition
       SVD
    Matrix Differentiation

Course 1 :

Slide 1 : Probability Theory Foundation

 Sample Space
 Probability Theory Foundation
    Axiomatic Foundations
    The Calculus of Probabilities
 Independence
 Conditional Probability
    Bayes Theorem
 Random Variables
 Probability Function
    Distribution Functions
    Density function

Slide 2: Moments

   Moments
       Expected Value
       Variance
       Covariance and Correlation
   Moment Generating Functions
       Normal mgf
   Matrix Notation for Moments

Slide 3: Distribution Functions

   Distributions
     Discrete Distribution
       Discrete Uniform Distribution
       Binomial Distribution
       Poisson Distribution
     Continuous Distribution
       Uniform Distribution
       Exponential Distribution
       Normal Distribution
       Lognormal Distribution
       Laplace Distribution
       Beta Distribution

Slide 4: Conditional and Multivariate Distributions

Joint and Marginal Distribution
Conditional Distributions and Independence
Bivariate Transformations
Hierarchical Models and Mixture Distribution
Bivariate Normal Distribution
Multivariate Distribution

Slide 5: Convergence Concepts

Random Samples
   Sums of Random Variable from a Random Sample
Inequalities
Convergence Concepts:
   Almost Sure Convergence
   Convergence in Probability
   Convergence in Distribution
The Delta Method

Slide 6: Maximum Likelihood Estimation

Maximum Likelihood Estimation
  Motivation and the Main Ideas
  Properties of the Maximum Likelihood Estimator

Slide 7: Bayesian and posterior distribution Estimation

   Computing the posterior
   Maximum likelihood estimation (MLE)
Maximum a posteriori (MAP) estimation
   Posterior mean
   MAP properties
Bayesian linear regression
Owner
Omid Safarzadeh
Deep Learning Expert, Kaggler
Omid Safarzadeh
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022