Natural Language Processing Specialization

Overview

Natural Language Processing Specialization


WHAT I LEARNED


  • Use logistic regression, naïve Bayes, and word vectors to implement sentiment analysis, complete analogies & translate words.

  • Use dynamic programming, hidden Markov models, and word embeddings to implement autocorrect, autocomplete & identify part-of-speech tags for words.

  • Use recurrent neural networks, LSTMs, GRUs & Siamese networks in Trax for sentiment analysis, text generation & named entity recognition.

  • Use encoder-decoder, causal, & self-attention to machine translate complete sentences, summarize text, build chatbots & question-answering.

There are 4 Courses in this Specialization


Course 1 - Natural Language Processing with Classification and Vector Spaces

  • In the first course of the Natural Language Processing Specialization

  • I performed sentiment analysis of tweets using logistic regression and then naïve Bayes,

  • I used vector space models to discover relationships between words and used PCA to reduce the dimensionality of the vector space and visualize those relationships, and

  • I wrote a simple English to French translation algorithm using pre-computed word embeddings and locality-sensitive hashing to relate words via approximate k-nearest neighbor search.

Projects


Course 2 - Natural Language Processing with Probabilistic Models

  • In the second course of the Natural Language Processing Specialization

  • I wrote a simple auto-correct algorithm using minimum edit distance and dynamic programming,

  • I applied the Viterbi Algorithm for part-of-speech (POS) tagging, which is vital for computational linguistics,

  • I wrote a better auto-complete algorithm using an N-gram language model, and

  • I wrote my own Word2Vec model that uses a neural network to compute word embeddings using a continuous bag-of-words model.

Projects


Course 3 - Natural Language Processing with Sequence Models

  • In the third course of the Natural Language Processing Specialization

  • I trained a neural network with GLoVe word embeddings to perform sentiment analysis of tweets,

  • I generated synthetic Shakespeare text using a Gated Recurrent Unit (GRU) language model,

  • I trained a recurrent neural network to perform named entity recognition (NER) using LSTMs with linear layers, and

  • I used so-called ‘Siamese’ LSTM models to compare questions in a corpus and identify those that are worded differently but have the same meaning.

Projects


Course 4 - Natural Language Processing with Attention Models

Projects


Disclaimer


  • DeepLearning.AI makes course notes available for educational purposes.
  • Project solutions are just for educational purposes. I highly recommend trying and solving project/program assignments on your own.

All the best 🤘

Owner
Kaan BOKE
Data Scientist
Kaan BOKE
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022