Repositório da disciplina no semestre 2021-2

Related tags

Text Data & NLP2021-2
Overview

Avisos!

  • Nenhum aviso!

Compiladores 1

Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, wiki e discussões. Este arquivo contêm informações básicas sobre a disciplina e o plano de ensino do semestre.

Informações básicas

Curso:
Engenharia de Software
Professor:
Fábio Macêdo Mendes
Disciplina:
Compiladores 1
Semestre/ano:
02/2020
Carga horária:
60 h
Créditos:
04

Ementa

  • Introdução
  • Autômatos
  • Organização e estrutura de compiladores e interpretadores.
  • Análise léxica.
  • Expressões Regulares
  • Análise sintática.
  • Gramáticas Regulares e Livres de Contexto
  • Estruturas de Dados e representação interna de código-fonte.
  • Análise semântica.
  • Geração de código.
  • Máquinas abstratas e ambientes de tempo de execução.
  • Projeto de Compiladores.
  • Compiladores, Interpretadores e Parsers na Engenharia de Software.

Horário das aulas e atendimento

Aulas teóricas e de exercícios: quartas e sextas-feiras às 14h Atendimento: realizado de forma assíncrona no grupo de Telegram da disciplina

Informações importantes

Este curso utiliza Telegram + GitHub + Microsoft Teams para gerenciar o curso. A comunicação com a turma é feita através do Telegram e os encontros presenciais no Microsoft Teams. Habilite a funcionalidade "Watch" no repositório para receber notificações sobre atualizações.

Github:
https://github.com/compiladores-fga/2021-2
Telegram:
(oculto, enviado por e-mail)
Teams:
(oculto, disponível no grupo de Telegram)

Critérios de avaliação

A avaliação será feita usando um critério de avaliação baseado em capacidades e competências complementada por um mecanismo de avaliação competitiva.

Avaliação por capacidades e competências

A avaliação é baseada no domínio de diversas competências e obtenção de medalhas relacionadas ao conteúdo do curso. A lista de competências está no arquivo COMPETENCIAS.md e a de medalhas em MEDALHAS.md

Cada competência é avaliada com uma nota numérica, onde a pontuação pode ser obtida por vários meios (provas, trabalhos, tutoriais, entre outros). O aluno precisa de uma nota numérica maior ou igual a 10 para ser considerado proficiente em cada uma destas competências.

As competências são itens considerados essenciais para a compreensão da disciplina e todos alunos precisam demonstrar proficiência em todas estas competências para serem aprovados.

Medalhas representam feitos que demonstram conhecimento mais aprofundado sobre os assuntos abordados no curso, além de habilitarem menções mais altas.

A menção final é calculada da seguinte maneira:

  • MI: Obteve pelo menos metade das competências básicas
  • MM: Obteve todas as competências básicas menos uma.
  • MS: Obteve todas as competências básicas e pelo menos 15 medalhas.
  • SS: Obteve todas as competências básicas e pelo menos 30 medalhas.

Código de ética e conduta

Algumas avaliações serão realizadas com auxílio do computador no laboratório de informática. Todas as submissões serão processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

As mesmas considerações também se aplicam às provas teóricas e atividades entregues no papel.

Prepare-se

O curso utiliza alguns pacotes e ferramentas para os quais cada estudante deverá providenciar a instalação o mais cedo o possível. O curso requer Python 3.6+ com alguns pacotes instalados:

  • Pip: Gerenciador de pacotes do Python (sudo apt-get install python3-pip)
  • Jupyter notebook/nteract/Google colab: Ambiente de programação científica (https://nteract.io)
  • Lark (pip3 install lark-parser --user): Biblioteca de parsing para Python. (note a ausência do sudo no comando!)
  • Docker: cria ambientes completamente isolados para teste e validação (sudo apt-get install docker.io)

Já que vamos utilizar o Python, vale a pena instalar as seguintes ferramentas:

  • virtualenvwrapper: isola ambientes de desenvolvimento
  • flake8: busca erros de estilo e programação no seu código
  • black: formatador de código de acordo com o guia de estilo do Python
  • pytest, pytest-cov: criação de testes unitários
  • hypothesis: auxilia na criação de testes unitários parametrizados.
  • Editores de código/IDE: Utilize o seu favorito. Caso precise de uma recomendação, seguem algumas: * PyCharm Educacional - IDE com ótimos recursos de introspecção e refatoração e que adora memória RAM. Possui uma versão livre e uma versão profissional paga, mas que é gratuita para estudantes. * VSCode - um bom meio termo entre uma IDE e um editor de código leve. Criado para Javascript, mas possui bons plugins para Python e várias outras linguagens. * Vi/Vim - herança dos anos 70 que nunca morre ;) Instale os plugins para Python.

DICA: em todos os casos, prefira instalar os pacotes Python utilizando o apt-get ou o mecanismo que sua distribuição fornece e, somente se o pacote não existir, instale-o utilizando o pip. Se utilizar o pip, faça a instalação de usuário utilizando o comando pip3 install <pacote> --user (NUNCA utilize o sudo junto com --user e evite instalar globalmente para evitar problemas futuros com o APT). Melhor ainda: isole o ambiente utilizado em cada disciplina com uma ferramenta como o Virtualenv ou o Poetry.

Linux e Docker

Os comandos de instalação acima assumem uma distribuição de Linux baseada em Debian. Não é necessário instalar uma distribuição deste tipo e você pode adaptar os comandos para o gerenciador de pacotes da sua distribuição (ou o Brew, no caso do OS X). Apesar do Linux não ser necessário para executar a maior parte das tarefas, é altamente recomendável que todos instalem o Docker para compartilharmos ambientes de desenvolvimento previsíveis (por exemplo, eu testarei as submissões em containers específicos que serão compartilhados com a turma). É possível executar o Docker em ambientes não-Linux utilizando o Docker Machine ou o Vagrant. Deste modo, cada aluno deve providenciar a instalação do Docker e Docker Compose na sua máquina.

Bibliografia principal

Dragon Book: Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Pearson, 2006. SICP: Structure and Interpretation of Computer Programs, Gerald Jay Sussman and Hal Abelson, MIT Press. (https://web.mit.edu/alexmv/6.037/sicp.pdf)

Material suplementar

Curso de Python: https://scrimba.com/learn/python Curso de Python no Youtube (pt-BR): https://www.youtube.com/watch?v=S9uPNppGsGo&list=PLvE-ZAFRgX8hnECDn1v9HNTI71veL3oW0

Cronograma de atividades

Consultar cronograma.

Obs.: O cronograma está sujeito a alterações.

My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023