A toolkit for document-level event extraction, containing some SOTA model implementations

Overview

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker

Source code for ACL-IJCNLP 2021 Long paper: Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker.

Our code is based on Doc2EDAG.

0. Introduction

Document-level event extraction aims to extract events within a document. Different from sentence-level event extraction, the arguments of an event record may scatter across sentences, which requires a comprehensive understanding of the cross-sentence context. Besides, a document may express several correlated events simultaneously, and recognizing the interdependency among them is fundamental to successful extraction. To tackle the aforementioned two challenges, We propose a novel heterogeneous Graph-based Interaction Model with a Tracker (GIT). A graph-based interaction network is introduced to capture the global context for the scattered event arguments across sentences with different heterogeneous edges. We also decode event records with a Tracker module, which tracks the extracted event records, so that the interdependency among events is taken into consideration. Our approach delivers better results over the state-of-the-art methods, especially in cross-sentence events and multiple events scenarios.

  • Architecture model overview

  • Overall Results

1. Package Description

GIT/
├─ dee/
    ├── __init__.py
    ├── base_task.py
    ├── dee_task.py
    ├── ner_task.py
    ├── dee_helper.py: data features constrcution and evaluation utils
    ├── dee_metric.py: data evaluation utils
    ├── config.py: process command arguments
    ├── dee_model.py: GIT model
    ├── ner_model.py
    ├── transformer.py: transformer module
    ├── utils.py: utils
├─ run_dee_task.py: the main entry
├─ train_multi.sh
├─ run_train.sh: script for training (including evaluation)
├─ run_eval.sh: script for evaluation
├─ Exps/: experiment outputs
├─ Data.zip
├─ Data: unzip Data.zip
├─ LICENSE
├─ README.md

2. Environments

  • python (3.6.9)
  • cuda (11.1)
  • Ubuntu-18.0.4 (5.4.0-73-generic)

3. Dependencies

  • numpy (1.19.5)
  • torch (1.8.1+cu111)
  • pytorch-pretrained-bert (0.4.0)
  • dgl-cu111 (0.6.1)
  • tensorboardX (2.2)

PS: The environments and dependencies listed here is different from what we use in our paper, so the results may be a bit different.

4. Preparation

  • Unzip Data.zip and you can get an Data folder, where the training/dev/test data locate.

5. Training

>> bash run_train.sh

6. Evaluation

>> bash run_eval.sh

(The evaluation is also conducted after the training)

7. License

This project is licensed under the MIT License - see the LICENSE file for details.

8. Citation

If you use this work or code, please kindly cite the following paper:

@inproceedings{xu-etal-2021-git,
    title = "Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker",
    author = "Runxin Xu  and
      Tianyu Liu  and
      Lei Li and
      Baobao Chang",
    booktitle = "The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)",
    year = "2021",
    publisher = "Association for Computational Linguistics",
}
Owner
人生苦短 及时行乐
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
C.J. Hutto 3.8k Dec 30, 2022