OpenChat: Opensource chatting framework for generative models

Overview

OpenChat: Opensource chatting framework for generative models

    ____   ____   ______ _   __   ______ __  __ ___   ______
   / __ \ / __ \ / ____// | / /  / ____// / / //   | /_  __/
  / / / // /_/ // __/  /  |/ /  / /    / /_/ // /| |  / /   
 / /_/ // ____// /___ / /|  /  / /___ / __  // ___ | / /    
 \____//_/    /_____//_/ |_/   \____//_/ /_//_/  |_|/_/     
  • OpenChat is opensource chatting framework for generative models.
  • You can talk with AI with only one line of code.



Installation

pip install openchat



Model Supports

  • DialoGPT : [small, medium, large]
  • BlenderBot : [small, medium, large, xlarge]
  • Coming Soon...



Usage

1. Terminal environment

  • Chatting on terminal.
  • Type .exit if you want to exit dialogue.
  • Type .clear if you want to clear all histories.
  • You can add additional user keywords. (Details are described below.)
>>> from openchat import OpenChat
>>> OpenChat(model="blenderbot", size="large")
Chat with facebook/blenderbot-1B-distill !
user : Hi. It is nice day.
bot : It is a nice day out. I am going to go for a walk. What are you up to?
user : I'll play computer game. Do you like playing game?
bot : I love playing video games. What kind of games do you like to play on your computer?
user : I love racing game. It is so exited. How about you?
bot : I love racing games as well. I like to play on the Playstation 4. What about you?
user : Usually I like to play on PC. I have a question. Who is CEO of Apple?
bot : The CEO of Apple is Steve Jobs. He founded the company in 1976.
user : That's right. I have an IPhone. It is my favorite phone. What is your phone?
bot : I have a Samsung Galaxy S8. I love it. It's the best phone I've ever had.
user : .exit
bot : good bye.

  • If you want to use GPU, use argument device="cuda"
>>> from openchat import OpenChat
>>> OpenChat(model="blenderbot", size="large", device="cuda")

2. Your own environment (not terminal)

  • You can use user id to manage user-specific history.
  • This can be useful when deployed on Facebook messenger or WhatsApp.
  • There is a web demo implementation in the /demo folder.


2.1. Write your own environment class

  • Make your own environment class inherited from BaseEnv
  • And implement your own run(model: BaseModel) method like below.
from typing import Dict
from flask import Flask, render_template
from flask_cors import CORS
from openchat.envs import BaseEnv
from openchat.models import BaseModel


class WebDemoEnv(BaseEnv):

    def __init__(self):
        super().__init__()
        self.app = Flask(__name__)
        CORS(self.app)

    def run(self, model: BaseModel):

        @self.app.route("/")
        def index():
            return render_template("index.html", title=model.name)

        @self.app.route('/send//', methods=['GET'])
        def send(user_id, text: str) -> Dict[str, str]:

            if text in self.keywords:
                # Format of self.keywords dictionary
                # self.keywords['/exit'] = (exit_function, 'good bye.')

                _out = self.keywords[text][1]
                # text to print when keyword triggered

                self.keywords[text][0](user_id, text)
                # function to operate when keyword triggered

            else:
                _out = model.predict(user_id, text)

            return {"output": _out}

        self.app.run(host="0.0.0.0", port=8080)

2.2. Start to run application.

from openchat import OpenChat
from demo.web_demo_env import WebDemoEnv

OpenChat(model="blenderbot", size="large", env=WebDemoEnv())



3. Additional Options

3.1. Add custom Keywords

  • You can add new manual keyword such as .exit, .clear,
  • call the self.add_keyword('.new_keyword', 'message to print', triggered_function)' method.
  • triggered_function should be form of function(user_id:str, text:str)
from openchat.envs import BaseEnv


class YourOwnEnv(BaseEnv):
    
    def __init__(self):
        super().__init__()
        self.add_keyword(".new_keyword", "message to print", self.function)

    def function(self, user_id: str, text: str):
        """do something !"""
        



3.2. Modify generation options

  • You can modify max_context_length (number of input history tokens, default is 128).
>>> OpenChat(size="large", device="cuda", max_context_length=256)

  • You can modify generation options ['num_beams', 'top_k', 'top_p'].
>>> model.predict(
...     user_id="USER_ID",
...     text="Hello.",
...     num_beams=5,
...     top_k=20,
...     top_p=0.8,
... )



3.3. Check histories

  • You can check all dialogue history using self.histories
from openchat.envs import BaseEnv


class YourOwnEnv(BaseEnv):
    
    def __init__(self):
        super().__init__()
        print(self.histories)
{
    user_1 : {'user': [] , 'bot': []},
    user_2 : {'user': [] , 'bot': []},
    ...more...
    user_n : {'user': [] , 'bot': []},
}

3.4. Clear histories

  • You can clear all dialogue histories
from flask import Flask
from openchat.envs import BaseEnv
from openchat.models import BaseModel

class YourOwnEnv(BaseEnv):
    
    def __init__(self):
        super().__init__()
        self.app = Flask(__name__)

    def run(self, model: BaseModel):
        
        @self.app.route('/send//', methods=['GET'])
        def send(user_id, text: str) -> Dict[str, str]:
            
            self.clear(user_id, text)
            # clear all histories ! 



License

Copyright 2021 Hyunwoong Ko.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Hyunwoong Ko
Co-Founder and Research Engineer at @tunib-ai. previously @kakaobrain.
Hyunwoong Ko
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023