precise iris segmentation

Overview

PI-DECODER

Introduction

PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below:

PI-DECODER

Please check technical paper.pdf in the "reference" subfolder for more details.

How to use?

For african dataset, you can enter the following script on your terminal:

python main.py --mode test --model_path ./models/african_best.pth --test_mode 1 --train_dataset african

Then you have iris mask, pupil mask and outer iris mask that are predicted by the input images. At the same time, the relevant index data will be displayed on your terminal.

(ijcb) PS F:\workspace\code\pytorch\PI-DECODER> python main.py --mode test --model_path ./models/african_best.pth --
test_mode 1 --train_dataset african
Namespace(batch_size=1, beta1=0.9, beta2=0.999, img_size=(640, 640), lr=0.0002, mode='test', model_path='./models/af
rican_best.pth', num_epochs=100, num_workers=2, result_path='./result/', test_mode=1, test_path='./dataset/test/', t
rain_dataset='african', train_path='./dataset/train/', valid_path='./dataset/valid/')
image count in train path :5
image count in valid path :5
image count in test path :40
Using Model: PI-DECODER
0.0688 seconds per image

----------------------------------------------------------------------------------------------------------------
|evaluation     |e1(%)          |e2(%)          |miou(%)        |f1(%)          |miou_back      |f1_back        |
----------------------------------------------------------------------------------------------------------------
|iris seg       |0.384026       |0.192013       |91.175200      |95.350625      |95.386805      |97.574698      |
|iris mask      |0.569627       |0.284813       |93.159855      |96.430411      |96.270919      |98.060105      |
|pupil mask     |0.078793       |0.039396       |93.138878      |96.409347      |96.529547      |98.184718      |
----------------------------------------------------------------------------------------------------------------
|average        |0.344149       |0.172074       |92.491311      |96.063461      |96.062424      |97.939840      |
----------------------------------------------------------------------------------------------------------------

Besides, if you don't have groud-truth files or just want to save the results, use test mode 2.

python main.py --mode test --model_path ./models/african_best.pth --test_mode 2 --train_dataset african

Requirements

The whole experiment was run on the NVIDIA RTX 3060. The following are recommended environment configurations.

matplotlib        3.3.4
numpy             1.19.5
opencv-python     4.5.1.48
pandas            1.1.5
Pillow            8.1.2
pip               21.0.1
pyparsing         2.4.7
python-dateutil   2.8.1
pytz              2021.1
scipy             1.5.4
setuptools        52.0.0.post20210125
six               1.15.0
thop              0.0.31.post2005241907
torch             1.7.0+cu110
torchstat         0.0.7
torchsummary      1.5.1
torchvision       0.8.1+cu110
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022