Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Overview

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference

Source code for RCDG model in AAAI20 Generating Persona Consistent Dialogues by Exploiting Natural Language Inference, a natural language inference (NLI) enhanced reinforcement learning dialogue model.

Requirements:

The code is tested under the following env:

  • Python 3.6
  • Pytorch 0.3.1

Install with conda: conda install pytorch==0.3.1 torchvision cudatoolkit=7.5 -c pytorch

This released code has been tested on a Titan-XP 12G GPU.

Data

We have provided some data samples in ./data to show the format. For downloading the full datasets, please refer to the following papers:

How to Run:

For a easier way to run the code, here the NLI model is GRU+MLP, i.e. RCDG_base, and we remove the time-consuming MC search.

Here are a few steps to run this code:

0. Prepare Data

python preprocess.py -train_src data/src-train.txt -train_tgt data/tgt-train.txt -train_per data/per-train.txt -valid_src data/src-val.txt -valid_tgt data/tgt-val.txt -valid_per data/per-val.txt -train_nli data/nli-train.txt -valid_nli data/nli-valid.txt -save_data data/nli_persona -src_vocab_size 18300 -tgt_vocab_size 18300 -share_vocab

And as introduced in the paper, there are different training stages:

1. NLI model Pretrain

cd NLI_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -save_model saved_model/consistent_dialogue -rnn_size 500 -word_vec_size 300 -dropout 0.2 -epochs 5 -learning_rate_decay 1 -gpu 0

And you should see something like:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 1
31432
Epoch  1, nli_step     1/ 4108; nli: 0.28125
Epoch  1, nli_step    11/ 4108; nli: 0.38125
Epoch  1, nli_step    21/ 4108; nli: 0.43438
Epoch  1, nli_step    31/ 4108; nli: 0.48125
Epoch  1, nli_step    41/ 4108; nli: 0.53750
Epoch  1, nli_step    51/ 4108; nli: 0.56250
Epoch  1, nli_step    61/ 4108; nli: 0.49062
...

2. Generator G Pretrain

cd ../G_pretrain/

python train.py -data ../data/nli_persona -batch_size 32 -rnn_size 500 -word_vec_size 300  -dropout 0.2 -epochs 15 -g_optim adam -g_learning_rate 1e-3 -learning_rate_decay 1 -train_from PATH_TO_PRETRAINED_NLI -gpu 0

Here the PATH_TO_PRETRAINED_NLI should be replaced by your model path, e.g., ../NLI_pretrain/saved_model/consistent_dialogue_e3.pt.

If , you should see the ppl comes down during training, which means the dialogue model is in training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  4, teacher_force     1/ 4108; acc:   0.00; ppl: 18619.76; 125 src tok/s; 162 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    11/ 4108; acc:   9.69; ppl: 2816.01; 4159 src tok/s; 5468 tgt tok/s;      3 s elapsed
Epoch  4, teacher_force    21/ 4108; acc:   9.78; ppl: 550.46; 5532 src tok/s; 6116 tgt tok/s;      4 s elapsed
Epoch  4, teacher_force    31/ 4108; acc:  11.15; ppl: 383.06; 5810 src tok/s; 6263 tgt tok/s;      5 s elapsed
...
Epoch  4, teacher_force   941/ 4108; acc:  25.40; ppl:  90.18; 5993 src tok/s; 6645 tgt tok/s;     63 s elapsed
Epoch  4, teacher_force   951/ 4108; acc:  27.49; ppl:  77.07; 5861 src tok/s; 6479 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   961/ 4108; acc:  26.24; ppl:  83.17; 5473 src tok/s; 6443 tgt tok/s;     64 s elapsed
Epoch  4, teacher_force   971/ 4108; acc:  24.33; ppl:  97.14; 5614 src tok/s; 6685 tgt tok/s;     65 s elapsed
...

3. Discriminator D Pretrain

cd ../D_pretrain/

python train.py -epochs 20 -d_optim adam -d_learning_rate 1e-4 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_G -batch_size 32 -learning_rate_decay 0.99 -gpu 0

Similarly, replace PATH_TO_PRETRAINED_G with the G Pretrain model path.

The acc of D will be displayed during training:

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  5, d_step     1/ 4108; d: 0.49587
Epoch  5, d_step    11/ 4108; d: 0.51580
Epoch  5, d_step    21/ 4108; d: 0.49853
Epoch  5, d_step    31/ 4108; d: 0.55248
Epoch  5, d_step    41/ 4108; d: 0.55168
...

4. Reinforcement Training

cd ../reinforcement_train/

python train.py -epochs 30 -batch_size 32 -d_learning_rate 1e-4 -g_learning_rate 1e-4 -learning_rate_decay 0.9 -data ../data/nli_persona -train_from PATH_TO_PRETRAINED_D -gpu 0

Remember to replace PATH_TO_PRETRAINED_D with the D Pretrain model path.

Note that all the -epochs are global among all stages, if you want to tune this parameter. Actually, there are 30 - 20 = 10 training epochs in this Reinforcement Training stage if the D Pretrain model was trained 20 epochs in total.

Loading train dataset from ../data/nli_persona.train.1.pt, number of examples: 131432
Epoch  7, self_sample     1/ 4108; acc:   2.12; ppl:   0.28; 298 src tok/s; 234 tgt tok/s;      2 s elapsed
Epoch  7, teacher_force    11/ 4108; acc:   3.32; ppl:   0.53; 2519 src tok/s; 2772 tgt tok/s;      3 s elapsed
Epoch  7, d_step    21/ 4108; d: 0.98896
Epoch  7, d_step    31/ 4108; d: 0.99906
Epoch  7, self_sample    41/ 4108; acc:   0.00; ppl:   0.27; 1769 src tok/s; 260 tgt tok/s;      7 s elapsed
Epoch  7, teacher_force    51/ 4108; acc:   2.83; ppl:   0.43; 2368 src tok/s; 2910 tgt tok/s;      9 s elapsed
Epoch  7, d_step    61/ 4108; d: 0.75311
Epoch  7, d_step    71/ 4108; d: 0.83919
Epoch  7, self_sample    81/ 4108; acc:   6.20; ppl:   0.33; 1791 src tok/s; 232 tgt tok/s;     12 s elapsed
...

5. Testing Trained Model

Now we have a trained dialogue model, we can test by:

Still in ./reinforcement_train/

python predict.py -model TRAINED_MODEL_PATH  -src ../data/src-val.txt -tgt ../data/tgt-val.txt -replace_unk -verbose -output ./results.txt -per ../data/per-val.txt -nli nli-val.txt -gpu 0

MISC

  • Initializing Model Seems Slow?

    This is a legacy problem due to pytorch < 0.4, not brought by this project. And the training efficiency will not be affected.

  • BibTex

     @article{Song_RCDG_2020,
     	title={Generating Persona Consistent Dialogues by Exploiting Natural Language Inference},
     	volume={34},
     	DOI={10.1609/aaai.v34i05.6417},
     	number={05},
     	journal={Proceedings of the AAAI Conference on Artificial Intelligence},
     	author={Song, Haoyu and Zhang, Wei-Nan and Hu, Jingwen and Liu, Ting},
     	year={2020},
     	month={Apr.},
     	pages={8878-8885}
     	}
    
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
1 Jun 28, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022