An Open-Source Package for Neural Relation Extraction (NRE)

Overview

OpenNRE

CircleCI

We have a DEMO website (http://opennre.thunlp.ai/). Try it out!

OpenNRE is an open-source and extensible toolkit that provides a unified framework to implement relation extraction models. This package is designed for the following groups:

  • New to relation extraction: We have hand-by-hand tutorials and detailed documents that can not only enable you to use relation extraction tools, but also help you better understand the research progress in this field.
  • Developers: Our easy-to-use interface and high-performance implementation can acclerate your deployment in the real-world applications. Besides, we provide several pretrained models which can be put into production without any training.
  • Researchers: With our modular design, various task settings and metric tools, you can easily carry out experiments on your own models with only minor modification. We have also provided several most-used benchmarks for different settings of relation extraction.
  • Anyone who need to submit an NLP homework to impress their professors: With state-of-the-art models, our package can definitely help you stand out among your classmates!

This package is mainly contributed by Tianyu Gao, Xu Han, Shulian Cao, Lumin Tang, Yankai Lin, Zhiyuan Liu

What is Relation Extraction

Relation extraction is a natural language processing (NLP) task aiming at extracting relations (e.g., founder of) between entities (e.g., Bill Gates and Microsoft). For example, from the sentence Bill Gates founded Microsoft, we can extract the relation triple (Bill Gates, founder of, Microsoft).

Relation extraction is a crucial technique in automatic knowledge graph construction. By using relation extraction, we can accumulatively extract new relation facts and expand the knowledge graph, which, as a way for machines to understand the human world, has many downstream applications like question answering, recommender system and search engine.

How to Cite

A good research work is always accompanied by a thorough and faithful reference. If you use or extend our work, please cite the following paper:

@inproceedings{han-etal-2019-opennre,
    title = "{O}pen{NRE}: An Open and Extensible Toolkit for Neural Relation Extraction",
    author = "Han, Xu and Gao, Tianyu and Yao, Yuan and Ye, Deming and Liu, Zhiyuan and Sun, Maosong",
    booktitle = "Proceedings of EMNLP-IJCNLP: System Demonstrations",
    year = "2019",
    url = "https://www.aclweb.org/anthology/D19-3029",
    doi = "10.18653/v1/D19-3029",
    pages = "169--174"
}

It's our honor to help you better explore relation extraction with our OpenNRE toolkit!

Papers and Document

If you want to learn more about neural relation extraction, visit another project of ours (NREPapers).

You can refer to our document for more details about this project.

Install

Install as A Python Package

We are now working on deploy OpenNRE as a Python package. Coming soon!

Using Git Repository

Clone the repository from our github page (don't forget to star us!)

git clone https://github.com/thunlp/OpenNRE.git

If it is too slow, you can try

git clone https://github.com/thunlp/OpenNRE.git --depth 1

Then install all the requirements:

pip install -r requirements.txt

Note: Please choose appropriate PyTorch version based on your machine (related to your CUDA version). For details, refer to https://pytorch.org/.

Then install the package with

python setup.py install 

If you also want to modify the code, run this:

python setup.py develop

Note that we have excluded all data and pretrain files for fast deployment. You can manually download them by running scripts in the benchmark and pretrain folders. For example, if you want to download FewRel dataset, you can run

bash benchmark/download_fewrel.sh

Easy Start

Make sure you have installed OpenNRE as instructed above. Then import our package and load pre-trained models.

>>> import opennre
>>> model = opennre.get_model('wiki80_cnn_softmax')

Note that it may take a few minutes to download checkpoint and data for the first time. Then use infer to do sentence-level relation extraction

>>> model.infer({'text': 'He was the son of Máel Dúin mac Máele Fithrich, and grandson of the high king Áed Uaridnach (died 612).', 'h': {'pos': (18, 46)}, 't': {'pos': (78, 91)}})
('father', 0.5108704566955566)

You will get the relation result and its confidence score.

For now, we have the following available models:

  • wiki80_cnn_softmax: trained on wiki80 dataset with a CNN encoder.
  • wiki80_bert_softmax: trained on wiki80 dataset with a BERT encoder.
  • wiki80_bertentity_softmax: trained on wiki80 dataset with a BERT encoder (using entity representation concatenation).
  • tacred_bert_softmax: trained on TACRED dataset with a BERT encoder.
  • tacred_bertentity_softmax: trained on TACRED dataset with a BERT encoder (using entity representation concatenation).

Training

You can train your own models on your own data with OpenNRE. In example folder we give example training codes for supervised RE models and bag-level RE models. You can either use our provided datasets or your own datasets.

Google Group

If you want to receive our update news or take part in discussions, please join our Google Group

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022