SentAugment is a data augmentation technique for semi-supervised learning in NLP.

Overview

SentAugment

SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structure the information of a very large bank of sentences. The large-scale sentence embedding space is then used to retrieve in-domain unannotated sentences for any language understanding task such that semi-supervised learning techniques like self-training and knowledge-distillation can be leveraged. This means you do not need to assume the presence of unannotated sentences to use semi-supervised learning techniques. In our paper Self-training Improves Pre-training for Natural Language Understanding, we show that SentAugment provides strong gains on multiple language understanding tasks when used in combination with self-training or knowledge distillation.

Model

Dependencies

I. The large-scale bank of sentences

Our approach is based on a large bank of CommonCrawl web sentences. We use SentAugment to filter domain-specific unannotated data for semi-supervised learning NLP methods. This data can be found here and can be recovered from CommonCrawl by the ccnet repository. It consists of 5 billion sentences, each file containing 100M sentences. As an example, we are going to use 100M sentences from the first file:

mkdir data && cd data
wget http://www.statmt.org/cc-english/x01.cc.5b.tar.gz

Then untar files and put all sentences into a single file:

tar -xvf *.tar.gz
cat *.5b > keys.txt

Then, for fast indexing, create a memory map (mmap) of this text file:

python src/compress_text.py --input data/keys.txt &

We will use this data as the bank of sentences.

II. The SentAugment sentence embedding space (SASE)

Our sentence encoder is based on the Transformer implementation of XLM. It obtains state-of-the-art performance on several STS benchmarks. To use it, first clone XLM:

git clone https://github.com/facebookresearch/XLM

Then, download the SentAugment sentence encoder (SASE), and its sentencepiece model:

cd data
wget https://dl.fbaipublicfiles.com/sentaugment/sase.pth
wget https://dl.fbaipublicfiles.com/sentaugment/sase.spm

Then to embed sentences, you can run for instance:

input=data/keys.txt  # input text file
output=data/keys.pt  # output pytorch file

# Encode sentence from $input file and save it to $output
python src/sase.py --input $input --model data/sase.pth --spm_model data/sase.spm --batch_size 64 --cuda "True" --output $output

This will output a torch file containing sentence embeddings (dim=256).

III. Retrieving nearest neighbor sentences from a query

Now that you have constructed a sentence embedding space by encoding many sentences from CommonCrawl, you can leverage that "bank of sentences" with similarity search. From an input query sentence, you can retrieve nearest neighbors from the bank by running:

nn.txt & ">
bank=data/keys.txt.ref.bin64  # compressed text file (bank)
emb=data/keys.pt  # embeddings of sentences (keys)
K=10000  # number of sentences to retrieve per query

## encode input sentences as sase embedding
input=sentence.txt  # input file containing a few (query) sentences
python src/sase.py --input $input --model data/sase.pth --spm_model data/sase.spm --batch_size 64 --cuda "True" --output $input.pt

## use embedding to retrieve nearest neighbors
input=sentence.txt  # input file containing a few (query) sentences
python src/flat_retrieve.py --input $input.pt --bank $bank --emb data/keys.pt --K $K > nn.txt &

Sentences in nn.txt can be used for semi-supervised learning as unannotated in-domain data. They also provide good paraphrases (use the cosine similarity score to filter good paraphrase pairs).

In the next part, we provide fast nearest-neighbor indexes for faster retrieval of similar sentences.

IV. Fast K-nearest neighbor search

Fast K-nearest neighbor search is particularly important when considering a large bank of sentences. We use FAISS indexes to optimize the memory usage and query time.

IV.1 - The KNN index bestiary

For fast nearest-neighbor search, we provide pretrained FAISS indexes (see Table below). Each index enables fast NN search based on different compression schemes. The embeddings are compressed using for instance scalar quantization (SQ4 or SQ8), PCA reduction (PCAR: 14, 40, 256), and search is sped up with k-means clustering (32k or 262k). Please consider looking at the FAISS documentation for more information on indexes and how to train them.

FAISS index #Sentences #Clusters Quantization #PCAR Machine Size
100M_1GPU_16GB 100M 32768 SQ4 256 1GPU16 14GiB
100M_1GPU_32GB 100M 32768 SQ8 256 1GPU32 26GiB
1B_1GPU_16GB 1B 262144 SQ4 14 1GPU16 15GiB
1B_1GPU_32GB 1B 262144 SQ4 40 1GPU32 28GiB
1B_8GPU_32GB 1B 262144 SQ4 256 8GPU32 136GiB

We provide indexes that fit either on 1 GPU with 16GiB memory (1GPU16) up to a larger index that fits on 1 GPU with 32 GiB memory (1GPU32) and one that fits on 8 GPUs (32GB). Indexes that use 100M sentences are built from the first file "x01.cc.5b.tar.gz", and 1B indexes use the first ten files. All indexes are based on SASE embeddings.

IV.2 - How to use an index to query nearest neighbors

You can get K nearest neighbors for each sentence of an input text file by running:

nn.txt & ">
## encode input sentences as sase embedding
input=sentence.txt  # input file containing a few (query) sentences
python src/sase.py --input $input --model data/sase.pth --spm_model data/sase.spm --batch_size 64 --cuda "True" --output $input.pt

index=data/100M_1GPU_16GB.faiss.idx  # FAISS index path
input=sentences.pt  # embeddings of input sentences
bank=data/keys.txt  # text file with all the data (the compressed file keys.ref.bin64 should also be present in the same folder)
K=10  # number of sentences to retrieve per query
NPROBE=1024 # number of probes for querying the index

python src/faiss_retrieve.py --input $input --bank $bank --index $index --K $K --nprobe $NPROBE --gpu "True" > nn.txt &

This can also be used for paraphrase mining.

Reference

If you found the resources here useful, please consider citing our paper:

@article{du2020self,
  title={Self-training Improves Pre-training for Natural Language Understanding},
  author={Du, Jingfei and Grave, Edouard and Gunel, Beliz and Chaudhary, Vishrav and Celebi, Onur and Auli, Michael and Stoyanov, Ves and Conneau, Alexis},
  journal={arXiv preprint arXiv:2010.02194},
  year={2020}
}

License

See the LICENSE file for more details. The majority of SentAugment is licensed under CC-BY-NC. However, license information for PyTorch code is available at https://github.com/pytorch/pytorch/blob/master/LICENSE

Owner
Meta Research
Meta Research
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
Seonghwan Kim 24 Sep 11, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022