Random Directed Acyclic Graph Generator

Overview

DAG_Generator

Random Directed Acyclic Graph Generator

verison1.0

简介

工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权的有向边$E_{ij}$表示。每个有向边$E_{ij}$表示$T_i$是$T_j$的父任务,$T_j$只能在其所有父任务完成后执行。为了方便操作和展示,一般在所有任务之前设立一个Start虚拟节点,作为所有没有父任务节点的父节点;同理,在所有任务之后设立一个Exit虚拟节点,作为所有没有子任务节点的子节点,这两个虚拟节点都没有计算资源需求。

此程序用于随机生成有向无环图(DAG)。本来的想法是按照文献[1]的方法来生成DAG,但是原文没有给出代码,难以实现,所以就仿照文章的设定来生成DAG。

确定表示一个DAG需要三个数据,分别是是节点连接信息,各节点的父节点数,各节点的子节点数。由这三个元素可以确定一个独立的DAG。例如一个10个节点的DAG:

Edges: [(1, 5), (1, 6), (2, 4), (2, 6), (3, 6), (4, 7), (4, 9), (5, 9), (5, 7), (6, 7), ('Start', 1), ('Start', 2), ('Start', 3), ('Start', 8), ('Start', 10), (7, 'Exit'), (8, 'Exit'), (9, 'Exit'), (10, 'Exit')]

In_degree: [1, 1, 1, 1, 1, 3, 3, 1, 2, 1] #不包括虚拟节点

out_degree: [2, 2, 1, 2, 2, 1, 1, 1, 1, 1] #不包括虚拟节点

DAG

参数设定
set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                            #max out_degree of one node
set_alpha = [0.5,1.0,1.5]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity
  1. set_dag_size : 设定的DAG任务大小,有[20,30,40,50,60,70,80,90],默认为20。
  2. set_max_out: 设定的一个节点最大出度,有[1,2,3,4,5],默认为2。
  3. set_alpha : 设定DAG控制形状的参数,有[0.5,1.0,1.5],默认为1.0。
  4. set_beta :设定DAG每层宽度的规则度参数,有[0.0,0.5,1.0,2.0] ,默认为1.0。

DAG的层数(深度)被设置为$\sqrt{set_dag_size}/set_alpha$, $\alpha$控制着DAG的Fat,$\alpha$越小,DAG越瘦长,$\alpha$越大,DAG越肥密。

DAGS

每层的宽度被随机设置为均值为$set_dag_size/length$,标准差为$\beta$的正态分布。$\beta$越大,DAG越不规则。

绘制

使用networkx库绘制DAG图。

def plot_DAG(edges,postion):
    g1 = nx.DiGraph()
    g1.add_edges_from(edges)
    nx.draw_networkx(g1, arrows=True, pos=postion)
    plt.savefig("DAG.png", format="PNG")
    return plt.clf

n = 30,max_out = 3, $\alpha$ = 1, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 0.5, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 1.5, $\beta$ = 1.0

DAG

代码
import random,math,argparse
import numpy as np
from numpy.random.mtrand import sample
from matplotlib import pyplot as plt
import networkx as nx

parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='default', type=str)#parameters setting
parser.add_argument('--n', default=10, type=int)          #number of DAG  nodes
parser.add_argument('--max_out', default=2, type=float)   #max out_degree of one node
parser.add_argument('--alpha',default=1,type=float)       #shape 
parser.add_argument('--beta',default=1.0,type=float)      #regularity
args = parser.parse_args()

set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                              #max out_degree of one node
set_alpha = [0.5,1.0,2.0]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity

def DAGs_generate(mode = 'default',n = 10,max_out = 2,alpha = 1,beta = 1.0):
    ##############################################initialize###########################################
    args.mode = mode
    if args.mode != 'default':
        args.n = random.sample(set_dag_size,1)[0]
        args.max_out = random.sample(set_max_out,1)[0]
        args.alpha = random.sample(set_alpha,1)[0]
        args.beta = random.sample(set_alpha,1)[0]
    else: 
        args.n = n
        args.max_out = max_out
        args.alpha = alpha
        args.beta = beta

    length = math.floor(math.sqrt(args.n)/args.alpha)
    mean_value = args.n/length
    random_num = np.random.normal(loc = mean_value, scale = args.beta,  size = (length,1))    
    ###############################################division############################################
    position = {'Start':(0,4),'Exit':(10,4)}
    generate_num = 0
    dag_num = 1
    dag_list = [] 
    for i in range(len(random_num)):
        dag_list.append([]) 
        for j in range(math.ceil(random_num[i])):
            dag_list[i].append(j)
        generate_num += math.ceil(random_num[i])

    if generate_num != args.n:
        if generate_num<args.n:
            for i in range(args.n-generate_num):
                index = random.randrange(0,length,1)
                dag_list[index].append(len(dag_list[index]))
        if generate_num>args.n:
            i = 0
            while i < generate_num-args.n:
                index = random.randrange(0,length,1)
                if len(dag_list[index])==1:
                    i = i-1 if i!=0 else 0
                else:
                    del dag_list[index][-1]
                i += 1

    dag_list_update = []
    pos = 1
    max_pos = 0
    for i in range(length):
        dag_list_update.append(list(range(dag_num,dag_num+len(dag_list[i]))))
        dag_num += len(dag_list_update[i])
        pos = 1
        for j in dag_list_update[i]:
            position[j] = (3*(i+1),pos)
            pos += 5
        max_pos = pos if pos > max_pos else max_pos
        position['Start']=(0,max_pos/2)
        position['Exit']=(3*(length+1),max_pos/2)

    ############################################link###################################################
    into_degree = [0]*args.n            
    out_degree = [0]*args.n             
    edges = []                          
    pred = 0

    for i in range(length-1):
        sample_list = list(range(len(dag_list_update[i+1])))
        for j in range(len(dag_list_update[i])):
            od = random.randrange(1,args.max_out+1,1)
            od = len(dag_list_update[i+1]) if len(dag_list_update[i+1])<od else od
            bridge = random.sample(sample_list,od)
            for k in bridge:
                edges.append((dag_list_update[i][j],dag_list_update[i+1][k]))
                into_degree[pred+len(dag_list_update[i])+k]+=1
                out_degree[pred+j]+=1 
        pred += len(dag_list_update[i])


    ######################################create start node and exit node################################
    for node,id in enumerate(into_degree):#给所有没有入边的节点添加入口节点作父亲
        if id ==0:
            edges.append(('Start',node+1))
            into_degree[node]+=1

    for node,od in enumerate(out_degree):#给所有没有出边的节点添加出口节点作儿子
        if od ==0:
            edges.append((node+1,'Exit'))
            out_degree[node]+=1

    #############################################plot##################################################
    return edges,into_degree,out_degree,position

参考

[1] [List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table](https://ieeexplore.ieee.org/abstract/document/6471969/)

[2] Building DAGs / Directed Acyclic Graphs with Python

[3] DAG Dependencies

[4] Networkx Lirbrary

[5] Python生成依赖性应用的DAG(有向无环图)拓扑

Owner
Livion
無限進步 Email: [email protected] Wechat: Livion2018
Livion
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022