PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Overview

Feature_CRF_AE

Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging:

@inproceedings{zhou-etal-2022-Bridging,
  title     = {Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging},
  author    = {Zhou, houquan and Li, yang and Li, Zhenghua and Zhang Min},
  booktitle = {Findings of ACL},
  year      = {2022},
  url       = {?},
  pages     = {?--?}
}

Please concact Jacob_Zhou \at outlook.com if you have any questions.

Contents

Installation

Feature_CRF_AE can be installing from source:

$ git clone https://github.com/Jacob-Zhou/FeatureCRFAE && cd FeatureCRFAE
$ bash scripts/setup.sh

The following requirements will be installed in scripts/setup.sh:

  • python: 3.7
  • allennlp: 1.2.2
  • pytorch: 1.6.0
  • transformers: 3.5.1
  • h5py: 3.1.0
  • matplotlib: 3.3.1
  • nltk: 3.5
  • numpy: 1.19.1
  • overrides: 3.1.0
  • scikit_learn: 1.0.2
  • seaborn: 0.11.0
  • tqdm: 4.49.0

For WSJ data, we use the ELMo representations of elmo_2x4096_512_2048cnn_2xhighway_5.5B from AllenNLP. For UD data, we use the ELMo representations released by HIT-SCIR.

The corresponding data and ELMo models can be download as follows:

# 1) UD data and ELMo models:
$ bash scripts/prepare_data.sh
# 2) UD data, ELMo models as well as WSJ data 
#    [please replace ~/treebank3/parsed/mrg/wsj/ with your path to LDC99T42]
$ bash scripts/prepare_data.sh ~/treebank3/parsed/mrg/wsj/

Performance

WSJ-All

Seed M-1 1-1 VM
0 84.29 70.03 78.43
1 82.34 64.42 77.27
2 84.68 62.78 77.83
3 82.55 65.00 77.35
4 82.20 66.69 77.33
Avg. 83.21 65.78 77.64
Std. 1.18 2.75 0.49

WSJ-Test

Seed M-1 1-1 VM
0 81.99 64.84 76.86
1 82.52 61.46 76.13
2 82.33 61.15 75.13
3 78.11 58.80 72.94
4 82.05 61.68 76.21
Avg. 81.40 61.59 75.45
Std. 1.85 2.15 1.54

Usage

We give some examples on scripts/examples.sh. Before run the code you should activate the virtual environment by:

$ . scripts/set_environment.sh

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Here are some training examples:

$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae_wsj
$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --ud-mode \
    --ud-feature \
    --ignore-capitalized \
    --language-specific-strip \
    --feat-min-freq 14 \
    --language de \
    --encoder elmo \
    --plm elmo_models/de \
    --train data/ud/de/total.conll \
    --evaluate data/ud/de/total.conll \
    --path save/crf_ae_de

For more instructions on training, please type python -m tagger.cmds.[crf_ae|feature_hmm] train -h.

Alternatively, We provides some equivalent command entry points registered in setup.py: crf-ae and feature-hmm.

$ crf-ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae

Evaluation

$ python -u -m tagger.cmds.crf_ae evaluate \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae

Predict

$ python -u -m tagger.cmds.crf_ae predict \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae \
    --pred save/crf_ae/pred.conll
Owner
Jacob Zhou
Jacob Zhou
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022