Unofficial PyTorch implementation of Google AI's VoiceFilter system

Overview

VoiceFilter

Note from Seung-won (2020.10.25)

Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-source, and I didn't expect this repository to grab such a great amount of attention for a long time. I would like to thank everyone for giving such attention, and also Mr. Quan Wang (the first author of the VoiceFilter paper) for referring this project in his paper.

Actually, this project was done by me when it was only 3 months after I started studying deep learning & speech separation without a supervisor in the relevant field. Back then, I didn't know what is a power-law compression, and the correct way to validate/test the models. Now that I've spent more time on deep learning & speech since then (I also wrote a paper published at Interspeech 2020 ๐Ÿ˜Š ), I can observe some obvious mistakes that I've made. Those issues were kindly raised by GitHub users; please refer to the Issues and Pull Requests for that. That being said, this repository can be quite unreliable, and I would like to remind everyone to use this code at their own risk (as specified in LICENSE).

Unfortunately, I can't afford extra time on revising this project or reviewing the Issues / Pull Requests. Instead, I would like to offer some pointers to newer, more reliable resources:

  • VoiceFilter-Lite: This is a newer version of VoiceFilter presented at Interspeech 2020, which is also written by Mr. Quan Wang (and his colleagues at Google). I highly recommend checking this paper, since it focused on a more realistic situation where VoiceFilter is needed.
  • List of VoiceFilter implementation available on GitHub: In March 2019, this repository was the only available open-source implementation of VoiceFilter. However, much better implementations that deserve more attention became available across GitHub. Please check them, and choose the one that meets your demand.
  • PyTorch Lightning: Back in 2019, I could not find a great deep-learning project template for myself, so I and my colleagues had used this project as a template for other new projects. For people who are searching for such project template, I would like to strongly recommend PyTorch Lightning. Even though I had done a lot of effort into developing my own template during 2019 (VoiceFilter -> RandWireNN -> MelNet -> MelGAN), I found PyTorch Lightning much better than my own template.

Thanks for reading, and I wish everyone good health during the global pandemic situation.

Best regards, Seung-won Park


Unofficial PyTorch implementation of Google AI's: VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking.

Result

  • Training took about 20 hours on AWS p3.2xlarge(NVIDIA V100).

Audio Sample

Metric

Median SDR Paper Ours
before VoiceFilter 2.5 1.9
after VoiceFilter 12.6 10.2

  • SDR converged at 10, which is slightly lower than paper's.

Dependencies

  1. Python and packages

    This code was tested on Python 3.6 with PyTorch 1.0.1. Other packages can be installed by:

    pip install -r requirements.txt
  2. Miscellaneous

    ffmpeg-normalize is used for resampling and normalizing wav files. See README.md of ffmpeg-normalize for installation.

Prepare Dataset

  1. Download LibriSpeech dataset

    To replicate VoiceFilter paper, get LibriSpeech dataset at http://www.openslr.org/12/. train-clear-100.tar.gz(6.3G) contains speech of 252 speakers, and train-clear-360.tar.gz(23G) contains 922 speakers. You may use either, but the more speakers you have in dataset, the more better VoiceFilter will be.

  2. Resample & Normalize wav files

    First, unzip tar.gz file to desired folder:

    tar -xvzf train-clear-360.tar.gz

    Next, copy utils/normalize-resample.sh to root directory of unzipped data folder. Then:

    vim normalize-resample.sh # set "N" as your CPU core number.
    chmod a+x normalize-resample.sh
    ./normalize-resample.sh # this may take long
  3. Edit config.yaml

    cd config
    cp default.yaml config.yaml
    vim config.yaml
  4. Preprocess wav files

    In order to boost training speed, perform STFT for each files before training by:

    python generator.py -c [config yaml] -d [data directory] -o [output directory] -p [processes to run]

    This will create 100,000(train) + 1000(test) data. (About 160G)

Train VoiceFilter

  1. Get pretrained model for speaker recognition system

    VoiceFilter utilizes speaker recognition system (d-vector embeddings). Here, we provide pretrained model for obtaining d-vector embeddings.

    This model was trained with VoxCeleb2 dataset, where utterances are randomly fit to time length [70, 90] frames. Tests are done with window 80 / hop 40 and have shown equal error rate about 1%. Data used for test were selected from first 8 speakers of VoxCeleb1 test dataset, where 10 utterances per each speakers are randomly selected.

    Update: Evaluation on VoxCeleb1 selected pair showed 7.4% EER.

    The model can be downloaded at this GDrive link.

  2. Run

    After specifying train_dir, test_dir at config.yaml, run:

    python trainer.py -c [config yaml] -e [path of embedder pt file] -m [name]

    This will create chkpt/name and logs/name at base directory(-b option, . in default)

  3. View tensorboardX

    tensorboard --logdir ./logs

  4. Resuming from checkpoint

    python trainer.py -c [config yaml] --checkpoint_path [chkpt/name/chkpt_{step}.pt] -e [path of embedder pt file] -m name

Evaluate

python inference.py -c [config yaml] -e [path of embedder pt file] --checkpoint_path [path of chkpt pt file] -m [path of mixed wav file] -r [path of reference wav file] -o [output directory]

Possible improvments

  • Try power-law compressed reconstruction error as loss function, instead of MSE. (See #14)

Author

Seungwon Park at MINDsLab ([email protected], [email protected])

License

Apache License 2.0

This repository contains codes adapted/copied from the followings:

Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ร–MER YILDIZ 4 Mar 20, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. ๊น€์œ ๋นˆ : ๋ชจ๋ธ๋ง / ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ / ํ”„๋กœ์ ํŠธ ์„ค๊ณ„ / back-end ๊น€์ข…์œค : ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ / ํ”„๋กœ์ ํŠธ ์„ค๊ณ„ / front-end / back-end ์ž„์šฉ

94 Dec 08, 2022
๐Ÿš€Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | ไธญๆ–‡ Features ๐ŸŒ Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022