Guide to using pre-trained large language models of source code

Overview

Large Models of Source Code

I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe how to use these.

  1. Setup
  2. Models (incl. PolyCoder)
  3. Datasets
  4. Evaluation
  5. How to cite

Getting Started

All current models were trained using the GPT NeoX toolkit. First, download a pretrained checkpoint as described below and then use this either with a Docker image or through our fork of this toolkit from source to generate code or replicate our evaluation.

Retrieving Checkpoints

Checkpoint files for training PolyCoder are hosted on this public Zenodo repository. See this section for details on currently available models. Model checkpoints range up to 6GB, which is also the amount of GPU memory they require to run (running on CPU is neither tested nor recommended). Download and untar a checkpoint file (in this case for a 2.7B parameter model trained for 150K steps) to a directory called checkpoints/, using:

mkdir checkpoints
cd checkpoints
wget https://zenodo.org/record/6363556/files/2-7B-150K.tar
tar -xvf 2-7B-150K.tar

From Source

We maintain a public fork of the NeoX repository here, which includes the (minor) changes we made to the codebase to allow for tabs & newlines in the tokenization, and also includes instructions for running the perplexity and HumanEval tasks. Note that this repository uses a forked version of the LM Evaluation Harness with the code benchmark from our work.

Building this repository should match the process for GPT-NeoX almost exactly. You may also use the Docker image mentioned next, but mounting a checkout of the latest version of this fork over the /gpt-neox directory inside the container. Once set up generate.py entrypoint (described below) for free-form code generation, or use one of the commands here to calculate perplexity and HumanEval results as in the paper.

Via Docker

A base Docker image containing a slightly modified version of the gpt-neox repository is available via DockerHub:

docker pull vhellendoorn/code-lms-neox:base

This image can be used together with a checkpoint file hosted on this public Zenodo repository. The base Docker image size is 5.4GB. Once a checkpoint has been retrieved, start the container with the following commands (substituting another GPU device index if needed):

nvidia-docker run --rm -it -e NVIDIA_VISIBLE_DEVICES=0 --shm-size=1g --ulimit memlock=-1 --mount type=bind,src=$PWD/checkpoints,dst=/gpt-neox/checkpoints vhellendoorn/code-lms-neox:base

Code Generation

The following command can be used to generate code from a prompt:

sudo ./deepy.py generate.py configs/text_generation.yml checkpoints/configs/local_setup.yml checkpoints/configs/2-7B.yml

Note: if not using the 2.7B parameter model, replace the final config file with the appropriate model size (e.g., small = 160M parameters, medium = 405M).

Once the checkpoint has been loaded, you can feed it an example such as def return1():\n """Returns 1."""\n (note the whitespace tokens) and watch it predict return 1 (and then probably a bunch of other returnX methods, depending on the sample).

The modifications to gpt-neox mentioned above center around the need to allow tabs and newlines in the prompt input. For the interactive mode, these can be added using their escaped versions (\t, \n); when using file-based input, the project will read the entire file instead of treating each line as a prompt. By default, the command below will create an interactive prompt and return relatively short outputs (256 tokens) with a sampling temperature of 0.5; this behavior can be changed in /gpt-neox/checkpoints/configs/text_generation.yml.

A lower temperature (e.g., 0.2) will produce more consistent and plausible (to the model) predictions; a higher temperature such as the default may be useful for generating and evaluating many candidates (see our paper for recommendations). For the latter setting, consider switching to the input-file mode and providing an entire snippet (without escaping whitespace) in the corresponding file

Multi-lingual Models

Several models have been trained on a large corpus of code spanning 12 programming languages. This includes a 2.7B parameter model (nick-named PolyCoder, trained for 100K and 150K steps), a 405M parameter model (100K & 150K steps) and a 160M parameter model (150K steps).

Available Models

All models are available at a public Zenodo repository, in the form of .tar files with fairly self-explanatory names (e.g., 2-7B-100K => a 2.7B parameter model trained for 100K steps). Currently available models include:

  • GPT2 - 2.7B: A 32 layer, 2,560 dimensional Transformer model, trained with a batch size of 128 sequences (256K tokens). Models available both at 100K and at 150K steps steps.
    • Note that GPT-Neox' default config for this model was modified to reduce the number of training steps (and learning rate decay steps accordingly) to 160K, down from 320K, to better match the available training resources. Hence, this model may not have reached its peak performance.
  • GPT2 - 0.4B: A 24 layer, 1,024 dimensional Transformer model based on the medium config, trained with 256K tokens per batch.
  • GPT2 - 160M: A 12 layer, 768 dimensional Transformer model based on the small config, trained with 256K tokens per batch.

Training Process

Training was done on 4 to 8 NVIDIA RTX 8000 GPUs, largely following the standard config values, except also enabling "scaled-upper-triang-masked-softmax-fusion" and "bias-gelu-fusion" for performance and slightly changing the batch size (see model details), data split (changed to 98.9%, 0.1%, 1%), initial loss scale (2^16), and print/eval intervals.

The below image shows the loss curve of the various models' training process in terms of validation loss. image

Caveats

The trained models come with a few minor known limitations:

  • This model was not trained to solve programming problems and may not perform well on a benchmark such as HumanEval. Models like Codex (powering Copilot) are pretrained on natural language, which may boost their ability to interpret NL prompts; this model only learned language from comments in code.
  • The model appears to start generating a random new file once it reaches the (predicted) end of the current one. It is possible that the end-of-document token was not properly added to the training data.
  • Whitespace is very important to the model, since no preprocessing was done on the input files. For instance, the following snippet will yield poor predictions, because in Java we would never expect an instance-method at the top-level, as is indicated by the single level of (\t) indentation of the two lines within this method:
public int getTotalWeight(List<Integer> weights) {\n\t// Sum weights in parallel.\n\treturn 

Adjusting the indentation makes it predict more reasonable continuations:

public int getTotalWeight(List<Integer> weights) {\n\t\t// Sum weights in parallel.\n\t\treturn 

The Codex model discusses controlling for this to increase usability; this may be worth doing in a future version of the model.

Datasets

249GB Multi-Lingual Corpus

This is the corpus used to train PolyCoder.

The datasets were cloned overnight on October 9-10, 2021. To mine a similar training set, see Data.

The list of file paths can be downloaded from: https://zenodo.org/record/6363556/files/index.zip. Each row in the file is the file path along with its SHA-256 hash, to ease deduplication. That is, the hashes allow checking if files from any future test set were already contained in the training set.

The data collection and filtering process is described in detail in the paper and below. The final, filtered dataset statistics are:

Language Repositories Size(GB) Files
C 10,749 55G 3,037,112
C# 9,511 21G 2,514,494
C++ 13,726 52G 4,289,506
Go 12,371 15G 1,416,789
Java 15,044 41G 5,120,129
JavaScript 25,144 22G 1,774,174
PHP 9,960 13G 1,714,058
Python 25,446 16G 1,550,208
Ruby 5,826 4.1G 674,343
Rust 4,991 3.5G 304,842
Scala 1,497 1.8G 245,100
TypeScript 12,830 9.2G 1,441,926

Data Collection & Filtering

I cloned the most popular repositories for 12 popular programming languages with at least 50 stars (stopping at ~25K per langauge) from GitHub in October 2021. For each project, each file belonging to the majority-language of that project was extracted, yielding the training set below (after cleaning). This initial, unfiltered dataset spanned 631GB and 38.9M files.

Next, similar to Codex and CodeParrot, very large (>1MB) and very short (<100 tokens) files were filtered out, reducing the dataset to 424GB. Files were then deduplicated based on a hash of their content, which reduced the number of files by another 30% or so, leaving 249GB of data and 24.1M files. No tokenization filters were applied; the model processes entire files including all comments. A code-specific vocabulary was constructed on a random 5% subset of the files above.

Evaluation

Please find detailed instructions for replicating our perplexity and HumanEval results on our public fork of the NeoX repository. This in turn leverages our extension of the LM Evaluation Harness.

Evaluating Codex

To download the test sets that we used in the paper (12 programming languages), use:

wget https://zenodo.org/record/6363556/files/unseen_test_sets.tar.gz
tar -xvzf unseen_test_sets.tar.gz

To get perplexity results on these samples using Codex' API, use:

export OPENAI_API_KEY=<YOUR OPEN AI API KEY>
python3 -u Evaluation/eval_codex_all.py --dirs Code-sampled100

Where <YOUR OPEN AI API KEY> is a private string that can be obtained by signing up for OpenAI's beta.

As of March 2022, getting an API Key is free for 3 months, and afterwards a credit card needs to be entered. However, even after entering a credit card, using our evaluation script does not lead to any costs.

Results - HumanEval

These are PolyCoder's results on the HumanEval benchmark:

Model [email protected] [email protected] [email protected]
PolyCoder (160M) 2.13% 3.35% 4.88%
PolyCoder (400M) 2.96% 5.29% 11.59%
PolyCoder (2.7B) 5.59% 9.87% 17.68%
CodeParrot (110M) 3.80% 6.57% 12.78%
CodeParrot (1.5B) 3.58% 8.03% 14.96%
GPT-Neo (125M) 0.75% 1.88% 2.97%
GPT-Neo (1.3B) 4.79% 7.47% 16.30%
GPT-Neo (2.7B) 6.41% 11.27% 21.37%
GPT-J (6B) 11.62% 15.74% 27.74%
Codex (300M) 13.17% 20.37% 36.27%
Codex (2.5B) 21.36% 35.42% 59.50%
Codex (12B) 28.81% 46.81% 72.31%

Results - Multilingual Language Modeling

These are the perplexity results of PolyCoder on the multilingual test sets:

Language Perplexity
C 2.3464
C# 2.5832
C++ 2.9189
Go 2.567
Java 2.9194
JavaScript 3.0611
PHP 3.6954
Python 3.1767
Ruby 3.9742
Rust 3.2449
Scala 3.8735
TypeScript 3.6143

A comparison with the other models is available in Figure 6 in the paper: image

Citation

A Systematic Evaluation of Large Language Models of Code

@article{xu2022systematic,
  title={A Systematic Evaluation of Large Language Models of Code},
  author={Xu, Frank F and Alon, Uri and Neubig, Graham and Hellendoorn, Vincent J},
  journal={arXiv preprint arXiv:2202.13169},
  year={2022}
}
Owner
Vincent Hellendoorn
AI4SE Researcher, Assistant Prof. at CMU
Vincent Hellendoorn
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022