Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Overview

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

This is the implementaion of our paper:

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation
Zhiwei He*, Xing Wang, Rui Wang, Shuming Shi, Zhaopeng Tu
ACL 2022 (long paper, main conference)

We based this code heavily on the original code of XLM, MASS and Deepaicode.

Dependencies

  • Python3

  • Pytorch1.7.1

    pip3 install torch==1.7.1+cu110
  • fastBPE

  • Apex

    git clone https://github.com/NVIDIA/apex
    cd apex
    git reset --hard 0c2c6ee
    pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .

Data ready

We prepared the data following the instruction from XLM (Section III). We used their released scripts, BPE codes and vocabularies. However, there are some differences with them:

  • All available data is used, not just 5,000,000 sentences per language

  • For Romanian, we augment it with the monolingual data from WMT16.

  • Noisy sentences are removed:

    python3 filter_noisy_data.py --input all.en --lang en --output clean.en
  • For English-German, we used the processed data provided by KaiTao Song.

Considering that it can take a very long time to prepare the data, we provide the processed data for download:

Pre-trained models

We adopted the released XLM and MASS models for all language pairs. In order to better reproduce the results for MASS on En-De, we used monolingual data to continue pre-training the MASS pre-trained model for 300 epochs and selected the best model ([email protected]) by perplexity (PPL) on the validation set.

Here are pre-trained models we used:

Languages XLM MASS
English-French Model Model
English-German Model Model
English-Romanian Model Model

Model training

We provide training scripts and trained models for UNMT baseline and our approach with online self-training.

Training scripts

Train UNMT model with online self-training and XLM initialization:

cd scripts
sh run-xlm-unmt-st-ende.sh

Note: remember to modify the path variables in the header of the shell script.

Trained model

We selected the best model by BLEU score on the validation set for both directions. Therefore, we release En-X and X-En models for each experiment.

Approch XLM MASS
UNMT En-Fr Fr-En En-Fr Fr-En
En-De De-En En-De De-En
En-Ro Ro-En En-Ro Ro-En
UNMT-ST En-Fr Fr-En En-Fr Fr-En
En-De De-En En-De De-En
En-Ro Ro-En En-Ro Ro-En

Evaluation

Generate translations

Input sentences must have the same tokenization and BPE codes than the ones used in the model.

cat input.en.bpe | \
python3 translate.py \
  --exp_name translate  \
  --src_lang en --tgt_lang de \
  --model_path trained_model.pth  \
  --output_path output.de.bpe \
  --batch_size 8

Remove bpe

sed  -r 's/(@@ )|(@@ ?$)//g' output.de.bpe > output.de.tok

Evaluate

BLEU_SCRIPT_PATH=src/evaluation/multi-bleu.perl
BLEU_SCRIPT_PATH ref.de.tok < output.de.tok
Owner
hezw.tkcw
PhD student @ SJTU
hezw.tkcw
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022