Understanding the Difficulty of Training Transformers

Overview

License PWC

Admin

Understanding the Difficulty of Training Transformers

Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successfully stabilizes previously-diverged Transformer training and achieves better performance, without introducing additional hyper-parameters. Admin is adapted for better half-precision stability and can be reparameterized into the original Transformer.

We are in an early-release beta. Expect some adventures and rough edges.

Table of Contents

Introduction

What complicates Transformer training?

In our study, we go beyond gradient vanishing and identify an amplification effect that substantially influences Transformer training. Specifically, for each layer in a multi-layer Transformer, heavy dependency on its residual branch makes training unstable, yet light dependency leads to sub-optimal performance.

Dependency and Amplification Effect

Our analysis starts from the observation that Pre-LN is more robust than Post-LN, whereas Post-LN typically leads to a better performance. As shown in Figure 1, we find these two variants have different layer dependency patterns.

With further exploration, we find that for a N-layer residual network, after updating its parameters W to W*, its outputs change is proportion to the dependency on residual branches.

Intuitively, since a larger output change indicates a more unsmooth loss surface, the large dependency complicates training. Moreover, we propose Admin (adaptive model initialization), which starts the training from the area with a smoother surface. More details can be found in our paper.

Quick Start Guide

Our implementation is based on the fairseq package (python 3.6, torch 1.5/1.6 are recommended). It can be installed by:

git clone https://github.com/LiyuanLucasLiu/Transforemr-Clinic.git
cd fairseq
pip install --editable .

The guidance for reproducing our results is available at:

Specifically, our implementation requires to first set --init-type adaptive-profiling and use one GPU for this profiling stage, then set --init-type adaptive and start training.

Citation

Please cite the following papers if you found our model useful. Thanks!

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han (2020). Understanding the Difficulty of Training Transformers. Proc. 2020 Conf. on Empirical Methods in Natural Language Processing (EMNLP'20).

@inproceedings{liu2020admin,
  title={Understanding the Difficulty of Training Transformers},
  author = {Liu, Liyuan and Liu, Xiaodong and Gao, Jianfeng and Chen, Weizhu and Han, Jiawei},
  booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},
  year={2020}
}

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao (2020). Very Deep Transformers for Neural Machine Translation. arXiv preprint arXiv:2008.07772 (2020).

@inproceedings{liu_deep_2020,
 author = {Liu, Xiaodong and Duh, Kevin and Liu, Liyuan and Gao, Jianfeng},
 booktitle = {arXiv:2008.07772 [cs]},
 title = {Very Deep Transformers for Neural Machine Translation},
 year = {2020}
}
Owner
Liyuan Liu
Ph.D. Student @ DMG, UIUC
Liyuan Liu
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023