FireFlyer Record file format, writer and reader for DL training samples.

Overview

FFRecord

The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux Asynchronous Input/Output (AIO) read.

File Format

Storage Layout:

+-----------------------------------+---------------------------------------+
|         checksum                  |             N                         |
+-----------------------------------+---------------------------------------+
|         checksums                 |           offsets                     |
+---------------------+---------------------+--------+----------------------+
|      sample 1       |      sample 2       | ....   |      sample N        |
+---------------------+---------------------+--------+----------------------+

Fields:

field size (bytes) description
checksum 4 CRC32 checksum of metadata
N 8 number of samples
checksums 4 * N CRC32 checksum of each sample
offsets 8 * N byte offset of each sample
sample i offsets[i + 1] - offsets[i] data of the i-th sample

Get Started

Requirements

Install

pip3 install ffrecord

Usage

We provide ffrecord.FileWriter and ffrecord.FileReader for reading and writing, respectively.

Write

To create a FileWriter object, you need to specify a file name and the total number of samples. And then you could call FileWriter.write_one() to write a sample to the FFRecord file. It accepts bytes or bytearray as input and appends the data to the end of the opened file.

from ffrecord import FileWriter


def serialize(sample):
    """ Serialize a sample to bytes or bytearray

    You could use anything you like to serialize the sample.
    Here we simply use pickle.dumps().
    """
    return pickle.dumps(sample)


samples = [i for i in range(100)]  # anything you would like to store
fname = 'test.ffr'
n = len(samples)  # number of samples to be written
writer = FileWriter(fname, n)

for i in range(n):
    data = serialize(samples[i])  # data should be bytes or bytearray
    writer.write_one(data)

writer.close()

Read

To create a FileReader object, you only need to specify the file name. And then you could call FileWriter.read() to read multiple samples from the FFReocrd file. It accepts a list of indices as input and outputs the corresponding samples data.

The reader would validate the checksum before returning the data if check_data = True.

from ffrecord import FileReader


def deserialize(data):
    """ deserialize bytes data

    The deserialize method should be paired with the serialize method above.
    """
    return pickle.loads(data)


fname = 'test.ffr'
reader = FileReader(fname, check_data=True)
print(f'Number of samples: {reader.n}')

indices = [3, 6, 0, 10]      # indices of each sample
data = reader.read(indices)  # return a list of bytes data

for i in range(n):
    sample = deserialize(data[i])
    # do what you want

reader.close()

Dataset and DataLoader for PyTorch

We also provide ffrecord.torch.Dataset and ffrecord.torch.DataLoader for PyTorch users to train models using FFRecord.

Different from torch.utils.data.Dataset which accepts an index as input and returns one sample, ffrecord.torch.Dataset accepts a batch of indices as input and returns a batch of samples. One advantage of ffrecord.torch.Dataset is that it could read a batch of data at a time using Linux AIO.

We first read a batch of bytes data from the FFReocrd file and then pass the bytes data to process() function. Users need to inherit from ffrecord.torch.Dataset and define their custom process() function.

Pipline:   indices ----------------------------> bytes -------------> samples
                      reader.read(indices)               process()

For example:

class CustomDataset(ffrecord.torch.Dataset):

    def __init__(self, fname, check_data=True, transform=None):
        super().__init__(fname, check_data)
        self.transform = transform

    def process(self, indices, data):
        # deserialize data
        samples = [pickle.loads(b) for b in data]

        # transform data
        if self.transform:
            samples = [self.transform(s) for s in samples]
        return samples

dataset = CustomDataset('train.ffr')
indices = [3, 4, 1, 0]
samples = dataset[indices]

ffrecord.torch.Dataset could be combined with ffrecord.torch.DataLoader just like PyTorch.

dataset = CustomDataset('train.ffr')
loader = ffrecord.torch.DataLoader(dataset,
                                   batch_size=16,
                                   shuffle=True,
                                   num_workers=8)

for i, batch in enumerate(loader):
    # training model
You might also like...
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play around in the Colab notebook provided. Note that, in both cases, you will need to train a WaveGAN model first

Text to speech is a process to convert any text into voice. Text to speech project takes words on digital devices and convert them into audio. Here I have used Google-text-to-speech library popularly known as gTTS library to convert text file to .mp3 file. Hope you like my project!
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Comments
  • install error

    install error

    When I install ffrecord with python setup.py install, it failed with the following errors:

    running install
    running bdist_egg
    running egg_info
    creating ffrecord.egg-info
    writing ffrecord.egg-info/PKG-INFO
    writing dependency_links to ffrecord.egg-info/dependency_links.txt
    writing requirements to ffrecord.egg-info/requires.txt
    writing top-level names to ffrecord.egg-info/top_level.txt
    writing manifest file 'ffrecord.egg-info/SOURCES.txt'
    reading manifest file 'ffrecord.egg-info/SOURCES.txt'
    writing manifest file 'ffrecord.egg-info/SOURCES.txt'
    installing library code to build/bdist.linux-x86_64/egg
    running install_lib
    running build_py
    creating build
    creating build/lib.linux-x86_64-3.7
    creating build/lib.linux-x86_64-3.7/ffrecord
    copying ffrecord/fileio.py -> build/lib.linux-x86_64-3.7/ffrecord
    copying ffrecord/__init__.py -> build/lib.linux-x86_64-3.7/ffrecord
    copying ffrecord/utils.py -> build/lib.linux-x86_64-3.7/ffrecord
    creating build/lib.linux-x86_64-3.7/ffrecord/torch
    copying ffrecord/torch/__init__.py -> build/lib.linux-x86_64-3.7/ffrecord/torch
    copying ffrecord/torch/dataset.py -> build/lib.linux-x86_64-3.7/ffrecord/torch
    copying ffrecord/torch/dataloader.py -> build/lib.linux-x86_64-3.7/ffrecord/torch
    running build_ext
    -- The C compiler identification is GNU 7.5.0
    -- The CXX compiler identification is GNU 7.5.0
    -- Detecting C compiler ABI info
    -- Detecting C compiler ABI info - done
    -- Check for working C compiler: /usr/bin/cc - skipped
    -- Detecting C compile features
    -- Detecting C compile features - done
    -- Detecting CXX compiler ABI info
    -- Detecting CXX compiler ABI info - done
    -- Check for working CXX compiler: /usr/bin/c++ - skipped
    -- Detecting CXX compile features
    -- Detecting CXX compile features - done
    -- Found PythonInterp: /opt/conda/bin/python (found version "3.7.10") 
    -- Found PythonLibs: /opt/conda/lib/libpython3.7m.so
    -- Performing Test HAS_CPP14_FLAG
    -- Performing Test HAS_CPP14_FLAG - Success
    -- Performing Test HAS_CPP11_FLAG
    -- Performing Test HAS_CPP11_FLAG - Success
    -- Performing Test HAS_LTO_FLAG
    -- Performing Test HAS_LTO_FLAG - Success
    -- Configuring done
    -- Generating done
    -- Build files have been written to: /root/ffrecord/build/temp.linux-x86_64-3.7
    [ 20%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/reader.cpp.o
    [ 40%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/writer.cpp.o
    [ 60%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/utils.cpp.o
    [ 80%] Building CXX object CMakeFiles/_ffrecord_cpp.dir/bindings.cpp.o
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘void ffrecord::WriterWrapper::write_one_wrapper(const pybind11::buffer&)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:22:44: error: passing ‘const pybind11::buffer’ as ‘this’ argument discards qualifiers [-fpermissive]
             py::buffer_info info = buf.request();
                                                ^
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:832:17: note:   in call to ‘pybind11::buffer_info pybind11::buffer::request(bool)’
         buffer_info request(bool writable = false) {
                     ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘std::vector<pybind11::array> ffrecord::ReaderWrapper::read_batch_wrapper(const std::vector<long int>&)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:41:59: error: invalid conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
                 auto capsule = py::capsule(b.data, free_buffer);
                                                               ^
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘pybind11::array ffrecord::ReaderWrapper::read_one_wrapper(int64_t)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:49:55: error: invalid conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
             auto capsule = py::capsule(b.data, free_buffer);
                                                           ^
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘pybind11::array_t<long int> ffrecord::ReaderWrapper::get_offsets(int)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:55:58: error: invalid user-defined conversion from ‘ffrecord::ReaderWrapper::get_offsets(int)::<lambda(void*)>’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                              ^
    /root/ffrecord/ffrecord/src/bindings.cpp:55:54: note: candidate is: ffrecord::ReaderWrapper::get_offsets(int)::<lambda(void*)>::operator void (*)(void*)() const <near match>
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                          ^
    /root/ffrecord/ffrecord/src/bindings.cpp:55:54: note:   no known conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: In member function ‘pybind11::array_t<unsigned int> ffrecord::ReaderWrapper::get_checksums(int)’:
    /root/ffrecord/ffrecord/src/bindings.cpp:61:58: error: invalid user-defined conversion from ‘ffrecord::ReaderWrapper::get_checksums(int)::<lambda(void*)>’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’ [-fpermissive]
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                              ^
    /root/ffrecord/ffrecord/src/bindings.cpp:61:54: note: candidate is: ffrecord::ReaderWrapper::get_checksums(int)::<lambda(void*)>::operator void (*)(void*)() const <near match>
             auto capsule = py::capsule(v.data(), [](void*) {});
                                                          ^
    /root/ffrecord/ffrecord/src/bindings.cpp:61:54: note:   no known conversion from ‘void (*)(void*)’ to ‘void (*)(PyObject*) {aka void (*)(_object*)}’
    In file included from /usr/include/pybind11/cast.h:13:0,
                     from /usr/include/pybind11/attr.h:13,
                     from /usr/include/pybind11/pybind11.h:36,
                     from /root/ffrecord/ffrecord/src/bindings.cpp:1:
    /usr/include/pybind11/pytypes.h:734:14: note:   initializing argument 2 of ‘pybind11::capsule::capsule(const void*, void (*)(PyObject*))’
         explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr)
                  ^~~~~~~
    /root/ffrecord/ffrecord/src/bindings.cpp: At global scope:
    /root/ffrecord/ffrecord/src/bindings.cpp:67:16: error: expected constructor, destructor, or type conversion before ‘(’ token
     PYBIND11_MODULE(_ffrecord_cpp, m) {
                    ^
    CMakeFiles/_ffrecord_cpp.dir/build.make:117: recipe for target 'CMakeFiles/_ffrecord_cpp.dir/bindings.cpp.o' failed
    make[2]: *** [CMakeFiles/_ffrecord_cpp.dir/bindings.cpp.o] Error 1
    CMakeFiles/Makefile2:82: recipe for target 'CMakeFiles/_ffrecord_cpp.dir/all' failed
    make[1]: *** [CMakeFiles/_ffrecord_cpp.dir/all] Error 2
    Makefile:90: recipe for target 'all' failed
    make: *** [all] Error 2
    Traceback (most recent call last):
      File "setup.py", line 24, in <module>
        ext_modules=[cpp_module]
      File "/opt/conda/lib/python3.7/site-packages/setuptools/__init__.py", line 153, in setup
        return distutils.core.setup(**attrs)
      File "/opt/conda/lib/python3.7/distutils/core.py", line 148, in setup
        dist.run_commands()
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 966, in run_commands
        self.run_command(cmd)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/install.py", line 67, in run
        self.do_egg_install()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/install.py", line 109, in do_egg_install
        self.run_command('bdist_egg')
      File "/opt/conda/lib/python3.7/distutils/cmd.py", line 313, in run_command
        self.distribution.run_command(command)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/bdist_egg.py", line 164, in run
        cmd = self.call_command('install_lib', warn_dir=0)
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/bdist_egg.py", line 150, in call_command
        self.run_command(cmdname)
      File "/opt/conda/lib/python3.7/distutils/cmd.py", line 313, in run_command
        self.distribution.run_command(command)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/install_lib.py", line 11, in run
        self.build()
      File "/opt/conda/lib/python3.7/distutils/command/install_lib.py", line 107, in build
        self.run_command('build_ext')
      File "/opt/conda/lib/python3.7/distutils/cmd.py", line 313, in run_command
        self.distribution.run_command(command)
      File "/opt/conda/lib/python3.7/distutils/dist.py", line 985, in run_command
        cmd_obj.run()
      File "/opt/conda/lib/python3.7/site-packages/setuptools/command/build_ext.py", line 79, in run
        _build_ext.run(self)
      File "/opt/conda/lib/python3.7/distutils/command/build_ext.py", line 340, in run
        self.build_extensions()
      File "/opt/conda/lib/python3.7/distutils/command/build_ext.py", line 449, in build_extensions
        self._build_extensions_serial()
      File "/opt/conda/lib/python3.7/distutils/command/build_ext.py", line 474, in _build_extensions_serial
        self.build_extension(ext)
      File "/root/ffrecord/cmake_build.py", line 118, in build_extension
        ["cmake", "--build", "."] + build_args, cwd=self.build_temp
      File "/opt/conda/lib/python3.7/subprocess.py", line 363, in check_call
        raise CalledProcessError(retcode, cmd)
    subprocess.CalledProcessError: Command '['cmake', '--build', '.']' returned non-zero exit status 2.
    
    bug install 
    opened by jimchenhub 3
  • Error of 0' failed. Number of submitted requests: -22"">

    Error of "RuntimeError: 'ns > 0' failed. Number of submitted requests: -22"

    I apply the sample code from README, but an error occurred in data = self.reader.read(indices) of the __getitem__ method in ffrecord.torch.dataset module. The following are more detailed error messages:


    -- Process 1 terminated with the following error:
    Traceback (most recent call last):
      File "xxxx/python3.8/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
        fn(i, *args)
      File "xxxx.py", line 172, in worker
        trainer.train(args, gpu_id, rank, train_loader, model, optimizer, scheduler, train_sampler)
      File "xxxx.py", line 39, in train
        for step, batch in enumerate(loader):
      File "xxxx/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
        data = self._next_data()
      File "xxxx/python3.8/site-packages/torch/utils/data/dataloader.py", line 1224, in _next_data
        return self._process_data(data)
      File "xxxx/python3.8/site-packages/torch/utils/data/dataloader.py", line 1250, in _process_data
        data.reraise()
      File "xxxx/python3.8/site-packages/site-packages/torch/_utils.py", line 457, in reraise
        raise exception
    RuntimeError: Caught RuntimeError in DataLoader worker process 0.
    Original Traceback (most recent call last):
      File "xxxx/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 287, in _worker_loop
        data = fetcher.fetch(index)
      File "xxxx/python3.8/site-packages/ffrecord-1.3.2+35c6863-py3.8-linux-x86_64.egg/ffrecord/torch/dataloader.py", line 151, in fetch
        data = self.dataset[indexes]
      File "xxx.py", line 34, in __getitem__
        data = self.reader.read(indices)
    RuntimeError: 'ns > 0' failed. Number of submitted requests: -22
    Error in std::vector<ffrecord::MemBlock> ffrecord::FileReader::read_batch(const std::vector<long int>&) at xxx/ffrecord/ffrecord/src/reader.cpp line 225
    

    What might be the cause of this error?

    opened by xlxwalex 7
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Open-source offline translation library written in Python. Uses OpenNMT for translations

Open source neural machine translation in Python. Designed to be used either as a Python library or desktop application. Uses OpenNMT for translations and PyQt for GUI.

Argos Open Tech 1.6k Jan 01, 2023
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022