The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

Overview

SCOOD-UDG (ICCV 2021)

paper   projectpage   gdrive  onedrive

This repository is the official implementation of the paper:

Semantically Coherent Out-of-Distribution Detection
Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, Ziwei Liu
Proceedings of the IEEE International Conference on Computer Vision (ICCV 2021)

udg

Dependencies

We use conda to manage our dependencies, and CUDA 10.1 to run our experiments.

You can specify the appropriate cudatoolkit version to install on your machine in the environment.yml file, and then run the following to create the conda environment:

conda env create -f environment.yml
conda activate scood

SC-OOD Dataset

scood

The SC-OOD dataset introduced in the paper can be downloaded here.

gdrive onedrive

Our codebase accesses the dataset from the root directory in a folder named data/ by default, i.e.

├── ...
├── data
│   ├── images
│   └── imglist
├── scood
├── test.py
├── train.py
├── ...

Training

The entry point for training is the train.py script. The hyperparameters for each experiment is specified by a .yml configuration file (examples given in configs/train/).

All experiment artifacts are saved in the specified args.output_dir directory.

python train.py \
    --config configs/train/cifar10_udg.yml \
    --data_dir data \
    --output_dir output/cifar10_udg

Testing

Evaluation for a trained model is performed by the test.py script, with its hyperparameters also specified by a .yml configuration file (examples given in configs/test/)

Within the configuration file, you can also specify which post-processing OOD method to use (e.g. ODIN or Energy-based OOD detector (EBO)).

The evaluation results are saved in a .csv file as specified.

python test.py \
    --config configs/test/cifar10.yml \
    --checkpoint output/cifar10_udg/best.ckpt \
    --data_dir data \
    --csv_path output/cifar10_udg/results.csv

Results

CIFAR-10 (+ Tiny-ImageNet) Results on ResNet18

You can run the following script (specifying the data and output directories) which perform training + testing for our main experimental results:

CIFAR-10, UDG

bash scripts/cifar10_udg.sh data_dir output_dir

We report the mean ± std results from the current codebase as follows, which match the performance reported in our original paper.

Metrics ODIN EBO OE UDG (ours)
FPR95 ↓ 50.76 ± 3.39 50.70 ± 2.86 54.99 ± 4.06 39.94 ± 3.77
AUROC ↑ 82.11 ± 0.24 83.99 ± 1.05 87.48 ± 0.61 93.27 ± 0.64
AUPR In ↑ 73.07 ± 0.40 76.84 ± 1.56 85.75 ± 1.70 93.36 ± 0.56
AUPR Out ↑ 85.06 ± 0.29 85.44 ± 0.73 86.95 ± 0.28 91.21 ± 1.23
[email protected] 0.30 ± 0.04 0.26 ± 0.09 7.09 ± 0.48 16.36 ± 4.33
[email protected] 1.22 ± 0.28 1.46 ± 0.18 13.69 ± 0.78 32.99 ± 4.16
[email protected] 6.13 ± 0.72 8.17 ± 0.96 29.60 ± 5.31 59.14 ± 2.60
[email protected] 39.61 ± 0.72 47.57 ± 3.33 64.33 ± 3.44 81.04 ± 1.46

License and Acknowledgements

This project is open-sourced under the MIT license.

The codebase is refactored by Ang Yi Zhe, and maintained by Jingkang Yang and Ang Yi Zhe.

Citation

If you find our repository useful for your research, please consider citing our paper:

@InProceedings{yang2021scood,
    author = {Yang, Jingkang and Wang, Haoqi and Feng, Litong and Yan, Xiaopeng and Zheng, Huabin and Zhang, Wayne and Liu, Ziwei},
    title = {Semantically Coherent Out-of-Distribution Detection},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
    year = {2021}
}
Owner
Jake YANG
[email protected] PhD Student
Jake YANG
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022