Replication attempt for the Protein Folding Model

Overview

RGN2-Replica (WIP)

To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding for particular use when no evolutionary homologs are available (ie. for protein design).

Install

$ pip install rgn2-replica

To load sample dataset

from datasets import load_from_disk
ds = load_from_disk("data/ur90_small")
print(ds['train'][0])

To convert to pandas for exploration

df = ds['train'].to_pandas()
df.sample(5)

To train ProteinLM

Run the following command with default parameters

python -m scripts.lmtrainer

This will start the run using sample dataset in repo directory on CPU.

TO-DO LIST: ordered by priority

  • Provide basic package and file structure

  • RGN2:

    • Contribute adaptation of RGN1 for different ops
      • Simple LSTM with:
        • Inputs (B, L, emb_dim)
        • Outputs (B, L, 4) (4 features which should be outputs of linear projections)
    • Find a good (and reproducible) training scheme
    • Benchmark regression vs classification of torsional alphabet
  • Language Model:

  • To be merged when first versions of RGN are ready:

    • Geometry module
    • Adapt functionality from MP-NeRF:
      • Sidechain building
      • Full backbone from CA
      • Fast loss functions and metrics
      • Modifications to convert LSTM cell into RGN cell
  • Contirbute trainer classes / functionality.

    • Sequence preprocessing for AminoBERT
      • inverted fragments
      • sequence masking
      • loss function wrapper v1 by @DrHB
      • Sample dataset by @gurvindersingh
      • Dataloder
      • ...
  • Contribute Data Infra for training:

  • Contribute Rosetta Scripts ( contact me by email ([email protected]) / discord to get a key for Rosetta if interested in doing this part. )

  • NOTES:

  • Use functionality provided in MP-NeRF wherever possible (avoid repetition).

Contribute:

Hey there! New ideas are welcome: open/close issues, fork the repo and share your code with a Pull Request.

Currently the main discussions / conversation about the model development is happening in this discord server under the /self-supervised-learning channel.

Clone this project to your computer:

git clone https://github.com/EricAlcaide/pysimplechain

Please, follow this guideline on open source contribtuion

Citations:

@article {Chowdhury2021.08.02.454840,
    author = {Chowdhury, Ratul and Bouatta, Nazim and Biswas, Surojit and Rochereau, Charlotte and Church, George M. and Sorger, Peter K. and AlQuraishi, Mohammed},
    title = {Single-sequence protein structure prediction using language models from deep learning},
    elocation-id = {2021.08.02.454840},
    year = {2021},
    doi = {10.1101/2021.08.02.454840},
    publisher = {Cold Spring Harbor Laboratory},
    URL = {https://www.biorxiv.org/content/early/2021/08/04/2021.08.02.454840},
    eprint = {https://www.biorxiv.org/content/early/2021/08/04/2021.08.02.454840.full.pdf},
    journal = {bioRxiv}
}

@article{alquraishi_2019,
	author={AlQuraishi, Mohammed},
	title={End-to-End Differentiable Learning of Protein Structure},
	volume={8},
	DOI={10.1016/j.cels.2019.03.006},
	URL={https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30076-6}
	number={4},
	journal={Cell Systems},
	year={2019},
	pages={292-301.e3}
Owner
Eric Alcaide
Y el mayor bien es pequeño; que toda la vida es sueño, y los sueños, sueños son.
Eric Alcaide
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022