[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

Overview

SoCo

[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu, Stephen Lin.

* Equal contribution.

Introduction

Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning. Such generality for transfer learning, however, sacrifices specificity if we are interested in a certain downstream task. We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task. In this paper, we follow this principle with a pretraining method specifically designed for the task of object detection. We attain alignment in the following three aspects:

  1. object-level representations are introduced via selective search bounding boxes as object proposals;
  2. the pretraining network architecture incorporates the same dedicated modules used in the detection pipeline (e.g. FPN);
  3. the pretraining is equipped with object detection properties such as object-level translation invariance and scale invariance. Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection using a Mask R-CNN framework.

Architecture

Main results

The pretrained models will be available soon.

SoCo pre-trained models

Model Arch Epochs Scripts Download
SoCo ResNet50-C4 100 SoCo_C4_100ep
SoCo ResNet50-C4 400 SoCo_C4_400ep
SoCo ResNet50-FPN 100 SoCo_FPN_100ep
SoCo ResNet50-FPN 400 SoCo_FPN_400ep
SoCo* ResNet50-FPN 400 SoCo_FPN_Star_400ep

Results on COCO with MaskRCNN R50-FPN

Methods Epoch APbb APbb50 APbb75 APmk APmk50 APmk75 Detectron2 trained
Scratch - 31.0 49.5 33.2 28.5 46.8 30.4 --
Supervised 90 38.9 59.6 42.7 35.4 56.5 38.1 --
SoCo 100 42.3 62.5 46.5 37.6 59.1 40.5
SoCo 400 43.0 63.3 47.1 38.2 60.2 41.0
SoCo* 400 43.2 63.5 47.4 38.4 60.2 41.4

Results on COCO with MaskRCNN R50-C4

Methods Epoch APbb APbb50 APbb75 APmk APmk50 APmk75 Detectron2 trained
Scratch - 26.4 44.0 27.8 29.3 46.9 30.8 --
Supervised 90 38.2 58.2 41.2 33.3 54.7 35.2 --
SoCo 100 40.4 60.4 43.7 34.9 56.8 37.0
SoCo 400 40.9 60.9 44.3 35.3 57.5 37.3

Get started

Requirements

The Dockerfile is included, please refer to it.

Prepare data with Selective Search

  1. Generate Selective Search proposals
    python selective_search/generate_imagenet_ss_proposals.py
  2. Filter out not valid proposals with filter strategy
    python selective_search/filter_ss_proposals_json.py
  3. Post preprocessing for no proposals images
    python selective_search/filter_ss_proposals_json_post_no_prop.py

Pretrain with SoCo

Use SoCo FPN 100 epoch as example.

bash ./tools/SoCo_FPN_100ep.sh

Finetune detector

  1. Copy the folder detectron2_configs to the root folder of Detectron2
  2. Train the detectors with Detectron2

Citation

@article{wei2021aligning,
  title={Aligning Pretraining for Detection via Object-Level Contrastive Learning},
  author={Wei, Fangyun and Gao, Yue and Wu, Zhirong and Hu, Han and Lin, Stephen},
  journal={arXiv preprint arXiv:2106.02637},
  year={2021}
}
Owner
Yue Gao
Researcher at Microsoft Research Asia
Yue Gao
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022