Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

Related tags

Deep LearningCSRA
Overview

CSRA

This is the official code of ICCV 2021 paper:
Residual Attention: A Simple But Effective Method for Multi-Label Recoginition

attention

Demo, Train and Validation code have been released! (including VIT on Wider-Attribute)

This package is developed by Mr. Ke Zhu (http://www.lamda.nju.edu.cn/zhuk/) and we have just finished the implementation code of ViT models. If you have any question about the code, please feel free to contact Mr. Ke Zhu ([email protected]). The package is free for academic usage. You can run it at your own risk. For other purposes, please contact Prof. Jianxin Wu (mail to [email protected]).

Requirements

  • Python 3.7
  • pytorch 1.6
  • torchvision 0.7.0
  • pycocotools 2.0
  • tqdm 4.49.0, pillow 7.2.0

Dataset

We expect VOC2007, COCO2014 and Wider-Attribute dataset to have the following structure:

Dataset/
|-- VOCdevkit/
|---- VOC2007/
|------ JPEGImages/
|------ Annotations/
|------ ImageSets/
......
|-- COCO2014/
|---- annotations/
|---- images/
|------ train2014/
|------ val2014/
......
|-- WIDER/
|---- Annotations/
|------ wider_attribute_test.json/
|------ wider_attribute_trainval.json/
|---- Image/
|------ train/
|------ val/
|------ test/
...

Then directly run the following command to generate json file (for implementation) of these datasets.

python utils/prepare/voc.py  --data_path  Dataset/VOCdevkit
python utils/prepare/coco.py --data_path  Dataset/COCO2014
python utils/prepare/wider.py --data_path Dataset/WIDER

which will automatically result in json files in ./data/voc07, ./data/coco and ./data/wider

Demo

We provide prediction demos of our models. The demo images (picked from VCO2007) have already been put into ./utils/demo_images/, you can simply run demo.py by using our CSRA models pretrained on VOC2007:

CUDA_VISIBLE_DEVICES=0 python demo.py --model resnet101 --num_heads 1 --lam 0.1 --dataset voc07 --load_from OUR_VOC_PRETRAINED.pth --img_dir utils/demo_images

which will output like this:

utils/demo_images/000001.jpg prediction: dog,person,
utils/demo_images/000004.jpg prediction: car,
utils/demo_images/000002.jpg prediction: train,
...

Validation

We provide pretrained models on Google Drive for validation. ResNet101 trained on ImageNet with CutMix augmentation can be downloaded here.

Dataset Backbone Head nums mAP(%) Resolution Download
VOC2007 ResNet-101 1 94.7 448x448 download
VOC2007 ResNet-cut 1 95.2 448x448 download
COCO ResNet-101 4 83.3 448x448 download
COCO ResNet-cut 6 85.6 448x448 download
Wider VIT_B16_224 1 89.0 224x224 download
Wider VIT_L16_224 1 90.2 224x224 download

For voc2007, run the following validation example:

CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20  --load_from MODEL.pth

For coco2014, run the following validation example:

CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 4 --lam 0.5 --dataset coco --num_cls 80  --load_from MODEL.pth

For wider attribute with ViT models, run the following

CUDA_VISIBLE_DEVICES=0 python val.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from ViT_B16_MODEL.pth
CUDA_VISIBLE_DEVICES=0 python val.py --model vit_L16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from ViT_L16_MODEL.pth

To provide pretrained VIT models on Wider-Attribute dataset, we retrain them recently, which has a slightly different performance (~0.1%mAP) from what has been presented in our paper. The structure of the VIT models is the initial VIT version (An image is worth 16x16 words: Transformers for image recognition at scale, link) and the implementation code of the VIT models is derived from http://github.com/rwightman/pytorch-image-models/.

Training

VOC2007

You can run either of these two lines below

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20
CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --cutmix CutMix_ResNet101.pth

Note that the first command uses the Official ResNet-101 backbone while the second command uses the ResNet-101 pretrained on ImageNet with CutMix augmentation link (which is supposed to gain better performance).

MS-COCO

run the ResNet-101 with 4 heads

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 6 --lam 0.5 --dataset coco --num_cls 80

run the ResNet-101 (pretrained with CutMix) with 6 heads

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --cutmix CutMix_ResNet101.pth

You can feel free to adjust the hyper-parameters such as number of attention heads (--num_heads), or the Lambda (--lam). Still, the default values of them in the above command are supposed to be the best.

Wider-Attribute

run the VIT_B16_224 with 1 heads

CUDA_VISIBLE_DEVICES=0 python main.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

run the VIT_L16_224 with 1 heads

CUDA_VISIBLE_DEVICES=0,1 python main.py --model vit_L16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

Note that the VIT_L16_224 model consume larger GPU space, so we use 2 GPUs to train them.

Notice

To avoid confusion, please note the 4 lines of code in Figure 1 (in paper) is only used in test stage (without training), which is our motivation. When our model is end-to-end training and testing, multi-head-attention (H=1, H=2, H=4, etc.) is used with different T values. Also, when H=1 and T=infty, the implementation code of multi-head-attention is exactly the same with Figure 1.

Acknowledgement

We thank Lin Sui (http://www.lamda.nju.edu.cn/suil/) for his initial contribution to this project.

Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
113 Nov 28, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022