LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

Overview

LibRerank

LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate. It also supports LambdaMART and DNN as initial ranker.

Get Started

Create virtual environment(optional)

pip install --user virtualenv
~/.local/bin/virtualenv -p python3 ./venv
source venv/bin/activate

Install LibRerank from source

git clone https://github.com/LibRerank-Community/LibRerank.git
cd LibRerank
make init 

Run example

Run initial ranker

bash example/run_ranker.sh

Run re-ranker

bash example/run_reranker.sh

We can choose to enter a config file like example/run_reranker.sh via the parameter setting_path. The config files for the different models can be found in example/config. We can also set various parameters directly from the command line. A list of supported parameters can be found in run_init_ranker.py and run_reranker.py.

Structure

librerank

Initial rankers

DNN: a naive algorithm that directly train a multi-layer perceptron network with input labels (e.g., clicks).

LambdaMART: the implementation of the LambdaMART model in From RankNet to LambdaRank to LambdaMART: An Overview

Re-ranking algorithms

DLCM: the implementation of the Deep Listwise Context Model in Learning a Deep Listwise Context Model for Ranking Refinement.

PRM: the implementation of the Personalized Re-ranking Model in Personalized Re-ranking for Recommendation

GSF: the implementation of the Groupwise Scoring Function in Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks.

miDNN: the implementation of the miDNN model in Globally Optimized Mutual Influence Aware Ranking in E-Commerce Search

SetRank: the implementation of the SetRank model in SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval.

Seq2Slate: the implementation of sequence-to-sequence model for re-ranking in Seq2Slate: Re-ranking and Slate Optimization with RNNs

EGRerank: the implementation of the Evaluator-Generator Reranking in AliExpress Learning-To-Rank: Maximizing Online Model Performance without Going Online

Data

We process two datasets, Ad and PRM Public, containing user and item features with recommendation lists for the experimentation with personalized re-ranking. The details of processed datasets are summarized in the following table

Dataset #item #list # user feature # item feature
Ad 349,404 483,049 8 6
PRM Public 2,851,766 1,295,496 3 24

Depending on the length of the initial ranking, the maximum length of initial lists (re-ranking size n) is set to 10 and 30 for Ad and PRM Public, respectively.

Ad

The original Ad dataset records 1 million users and 26 million ad display/click logs, with 8 user profiles (e.g., id, age, and occupation), 6 item features (e.g., id, campaign, and brand). Following previous work, We transform records of each user into ranking lists according to the timestamp of the user browsing the advertisement. Items that have been interacted with within five minutes are sliced into a list and the processed data is avaliable here. The detailed process is here.

PRM public

The original PRM public dataset contains re-ranking lists from a real-world e-commerce RS. Each record is a recommendation list consisting of 3 user profile features, 5 categorical, and 19 dense item features. Due to the memory limitation, we randomly sample 10% of lists and remained data is avaliable here. The detailed process is here.

Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and motion planning

pybullet-planning (previously ss-pybullet) A repository of PyBullet utility functions for robotic motion planning, manipulation planning, and task and

Caelan Garrett 260 Dec 27, 2022