Winning solution for the Galaxy Challenge on Kaggle

Overview

kaggle-galaxies

Winning solution for the Galaxy Challenge on Kaggle (http://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge).

Documentation about the method and the code is available in doc/documentation.pdf. Information on how to generate the solution file can also be found below.

Generating the solution

Install the dependencies

Instructions for installing Theano and getting it to run on the GPU can be found here. It should be possible to install NumPy, SciPy, scikit-image and pandas using pip or easy_install. To install pylearn2, simply run:

git clone git://github.com/lisa-lab/pylearn2.git

and add the resulting directory to your PYTHONPATH.

The optional dependencies listed in the documentation don't have to be installed to reproduce the winning solution: the generated data files are already provided, so they don't have to be regenerated (but of course you can if you want to). If you want to install them, please refer to their respective documentation.

Download the code

To download the code, run:

git clone git://github.com/benanne/kaggle-galaxies.git

A bunch of data files (extracted sextractor parameters, IDs files, training labels in NumPy format, ...) are also included. I decided to include these since generating them is a bit tedious and requires extra dependencies. It's about 20MB in total, so depending on your connection speed it could take a minute. Cloning the repository should also create the necessary directory structure (see doc/documentation.pdf for more info).

Download the training data

Download the data files from Kaggle. Place and extract the files in the following locations:

  • data/raw/training_solutions_rev1.csv
  • data/raw/images_train_rev1/*.jpg
  • data/raw/images_test_rev1/*.jpg

Note that the zip file with the training images is called images_training_rev1.zip, but they should go in a directory called images_train_rev1. This is just for consistency.

Create data files

This step may be skipped. The necessary data files have been included in the git repository. Nevertheless, if you wish to regenerate them (or make changes to how they are generated), here's how to do it.

  • create data/train_ids.npy by running python create_train_ids_file.py.
  • create data/test_ids.npy by running python create_test_ids_file.py.
  • create data/solutions_train.npy by running python convert_training_labels_to_npy.py.
  • create data/pysex_params_extra_*.npy.gz by running python extract_pysex_params_extra.py.
  • create data/pysex_params_gen2_*.npy.gz by running python extract_pysex_params_gen2.py.

Copy data to RAM

Copy the train and test images to /dev/shm by running:

python copy_data_to_shm.py

If you don't want to do this, you'll need to modify the realtime_augmentation.py file in a few places. Please refer to the documentation for more information.

Train the networks

To train the best single model, run:

python try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.py

On a GeForce GTX 680, this took about 67 hours to run to completion. The prediction file generated by this script, predictions/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.csv.gz, should get you a score that's good enough to land in the #1 position (without any model averaging). You can similarly run the other try_*.py scripts to train the other models I used in the winning ensemble.

If you have more than 2GB of GPU memory, I recommend disabling Theano's garbage collector with allow_gc=False in your .theanorc file or in the THEANO_FLAGS environment variable, for a nice speedup. Please refer to the Theano documentation for more information on how to get the most out Theano's GPU support.

Generate augmented predictions

To generate predictions which are averaged across multiple transformations of the input, run:

python predict_augmented_npy_maxout2048_extradense.py

This takes just over 4 hours on a GeForce GTX 680, and will create two files predictions/final/augmented/valid/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.npy.gz and predictions/final/augmented/test/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.npy.gz. You can similarly run the corresponding predict_augmented_npy_*.py files for the other models you trained.

Blend augmented predictions

To generate blended prediction files from all the models for which you generated augmented predictions, run:

python ensemble_predictions_npy.py

The script checks which files are present in predictions/final/augmented/test/ and uses this to determine the models for which predictions are available. It will create three files:

  • predictions/final/blended/blended_predictions_uniform.npy.gz: uniform blend.
  • predictions/final/blended/blended_predictions.npy.gz: weighted linear blend.
  • predictions/final/blended/blended_predictions_separate.npy.gz: weighted linear blend, with separate weights for each question.

Convert prediction file to CSV

Finally, in order to prepare the predictions for submission, the prediction file needs to be converted from .npy.gz format to .csv.gz. Run the following to do so (or similarly for any other prediction file in .npy.gz format):

python create_submission_from_npy.py predictions/final/blended/blended_predictions_uniform.npy.gz

Submit predictions

Submit the file predictions/final/blended/blended_predictions_uniform.csv.gz on Kaggle to get it scored. Note that the process of generating this file involves considerable randomness: the weights of the networks are initialised randomly, the training data for each chunk is randomly selected, ... so I cannot guarantee that you will achieve the same score as I did. I did not use fixed random seeds. This might not have made much of a difference though, since different GPUs and CUDA toolkit versions will also introduce different rounding errors.

Owner
Sander Dieleman
Sander Dieleman
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022